A89: RE: Converting (wrong file)
[Prev][Next][Index][Thread]
A89: RE: Converting (wrong file)
Sorry. I uploaded the wrong file. This is the right one.
Josh
/* This program employs the recently discovered digit extraction scheme
to produce hex digits of pi. This code is valid up to ic = 2^24 on
systems with IEEE arithmetic. */
/* David H. Bailey 960429 */
#include <stdio.h>
#include <math.h>
main()
{
double pid, s1, s2, s3, s4;
double series (int m, int n);
void ihex (double x, int m, char c[]);
int ic = 1000000;
#define NHX 16
char chx[NHX];
/* ic is the hex digit position -- output begins at position ic + 1. */
s1 = series (1, ic);
s2 = series (4, ic);
s3 = series (5, ic);
s4 = series (6, ic);
pid = 4. * s1 - 2. * s2 - s3 - s4;
pid = pid - (int) pid + 1.;
ihex (pid, NHX, chx);
printf ("Pi hex digit computation\n");
printf ("position = %i + 1\n %20.15f\n %12.12s\n", ic, pid, chx);
}
void ihex (double x, int nhx, char chx[])
/* This returns, in chx, the first nhx hex digits of the fraction of x.
*/
{
int i;
double y;
char hx[] = "0123456789ABCDEF";
y = fabs (x);
for (i = 0; i < nhx; i++){
y = 16. * (y - floor (y));
chx[i] = hx[(int) y];
}
}
double series (int m, int ic)
/* This routine evaluates the series sum_k 16^(ic-k)/(8*k+m)
using the modular exponentiation technique. */
{
int k;
double ak, eps, p, s, t;
double expm (double x, double y);
#define eps 1e-17
s = 0.;
/* Sum the series up to ic. */
for (k = 0; k < ic; k++){
ak = 8 * k + m;
p = ic - k;
t = expm (p, ak);
s = s + t / ak;
s = s - (int) s;
}
/* Compute a few terms where k >= ic. */
for (k = ic; k <= ic + 100; k++){
ak = 8 * k + m;
t = pow (16., (double) (ic - k)) / ak;
if (t < eps) break;
s = s + t;
s = s - (int) s;
}
return s;
}
double expm (double p, double ak)
/* expm = 16^p mod ak. This routine uses the left-to-right binary
exponentiation scheme. It is valid for ak <= 2^24. */
{
int i, j;
double p1, pt, r;
#define ntp 25
static double tp[ntp];
static int tp1 = 0;
/* If this is the first call to expm, fill the power of two table tp. */
if (tp1 == 0) {
tp1 = 1;
tp[0] = 1.;
for (i = 1; i < ntp; i++) tp[i] = 2. * tp[i-1];
}
if (ak == 1.) return 0.;
/* Find the greatest power of two less than or equal to p. */
for (i = 0; i < ntp; i++) if (tp[i] > p) break;
pt = tp[i-1];
p1 = p;
r = 1.;
/* Perform binary exponentiation algorithm modulo ak. */
for (j = 1; j <= i; j++){
if (p1 >= pt){
r = 16. * r;
r = r - (int) (r / ak) * ak;
p1 = p1 - pt;
}
pt = 0.5 * pt;
if (pt >= 1.){
r = r * r;
r = r - (int) (r / ak) * ak;
}
}
return r;
}
Follow-Ups: