The Most Complete TI-BASIC Optimization Guide

For the TI-82, TI-83, and TI-83+/SE calculators

By Matt Offner, a.k.a. TI83Plus_BASIC_Wizard, a.k.a. Darth Mathias

Hello, fellow TI-calcers!  You might recognize me as the one and only TI83Plus_BASIC_Wizard, commonly found posting optimized code on the math program page.  I am the emperor of the great programming group, Dark Side Programming (haven't heard of it?  Probably not).  Currently there are only two members: myself, and a friend of mine named Jon Volkmer, alias Darth Ferahgo.  If you are interested in joining, send an email to me at draksideprogramming@yahoo.com, introducing yourself, and include your best programming.
Anyhoo, hither and yon towards the optimization hints.

First and foremost, never include the last parentheses ), braces }, brackets ], and quotes " unless they are absolutely needed!  I have edited programs released by other programmers, very good programmers, I might add, only to find that their optimization skills needed improvement.  For example, ProBowl by Taren Nauxen (which I will highly recommend, as it beats the snot of the popular Bowl3D) is an excellent program; however, with a size of 18203 bytes, it is huge.  After I carved the extra bytes out of it, it had a size of 16553 bytes, a decrease of 1650 bytes, or approximately 1.61 kilobytes, out of the total 24.25 kilobytes available on the 83+/SE.  Not all of this was parentheses, quotes, braces, and brackets, but a large portion of it was.

However, this trick will not work if you have a colon : following text, as it will not close the text.  For example:

PROGRAM:EXAMPLE

:ClrDraw

:Text(0,0,"This is an example of the"):Text(6,0,"skills that this tutorial is teaching"):Text(12,0,"you about optimization")

may be optimized to:

:ClrDraw

:Text(0,0,"This is an example of the":Text(6,0,"skills that this tutorial is teaching":Text(12,0,"you about optimization

but, this may be further optimized to:

:ClrDraw

:Text(0,0,"This is an example of the

:Text(6,0,"skills that this tutorial is teaching

:Text(12,0,"you about optimization

Note that

:ClrDraw

:Text(0,0,"This is an example of the:Text(6,0,"skills that this tutorial is teaching:Text(12,0,"you about optimization

will not work, as it will cause a syntax error.

Next, never use the multiplication symbol * with variables. 

Instead of:

5*A->A

use:

5A->A

By the same token, if at all possible, switch the order of an operation to cut bytes.  For example:

(B+C)/D

can be changed to:

D-1(B+C

For multiples of ten, use the small E (over the comma key) to save bytes.

Instead of: 
use:

100

E2

2000

2E3

40000

4E4

830000
83E4 
(using 8.3E5, which is equivalent, uses one more byte for the     decimal point)

Do as many calculations ahead of time, especially if they will save space.  For example: 33 becomes 27.

For numbers that are used numerous times inside a program, assign them to a variable.  This trick also works for strings that are repeated in a program.

IMPORTANT TIP!

Most programmers are not aware of this little-used function: expr(

Any idea what it does?

Didn’t think so.

It allows the programmer to store an expression to a string (including graph equations), then execute the string.  For example:

:Input “Series formula:”,Str1

:Input “Start:”,A

:Input “End:”,B

:Input “Step:”,N

:Pause sum(seq(expr(Str1),X,A,B,N

This program (my SeriesSum program that I designed in under five minutes) prompts the user for a series, then a start, finish, and step (usually 1), then calculates the sum.  Since you may use graph equations, you just scored yourself 28 “extra” strings to use for text and data storage.  But if you use graph equations to store data in a graphics-based program, remember to turn the functions off with FnOff.

SUPER IMPOTANT TIP!

Using the knowledge given above, a programmer may take the size of a list and squish it dramatically.  It’s a pain in the butt to do by hand, so look for CalcZip on the ticalc website.

Join together Disp executions as follows:

:Disp "Hello,

:Disp "programmers!

:Disp "Have fun using

:Disp "these

:Disp "programming tips

becomes

:Disp "Hello,","programmers!","Have fun using","these","programming tips

Also, for those programs which require multiple screen display (i.e. the use of Disp functions exceeds the screen height), Pause functions are used.  For these, eliminate the last Disp function and display the data using Pause:

:Disp "Hello,","programmers!","Have fun using","these

:Pause "programming tips

Use as few Goto commands as possible, as these search the program from the top for the corresponding label.  If you cannot do so, at least refrain from using them inside If-Then statements.  The reason for this is that as a result of using them inside If-Then statements, the program never reaches the End statement, and after too many of these instances, the program will crash and cause a memory error, and then you will be royally screwed, because you will have to start the program all over again, and restart using it, as you will lose all unsaved data used by the program (unless you are an excellent program hacker, such as myself, and are able to modify the program to make it able to auto-save into a list and recall data from previous use).

Use DelVar commands to set the value of a real variable to zero.  This saves one byte over the 0-> method, and DelVar commands may be hooked together in one big line (in some cases, longer lines than those found in congo lines at huge gatherings).  An example of this is given by the following program (which clears the contents of all real variables, a "real" useful function that may be used in a program that deletes variables, but not programs, i.e., a semi-reset function):

:DelVar ADelVar BDelVar CDelVar DDelVar EDelVar FDelVar GDelVar HDelVar  IDelVar J       DelVar KDelVar LDelVar MDelVar NDelVar ODelVar PDelVar QDelVar RDelVar SDelVar T         DelVar UDelVar VDelVar WDelVar XDelVar YDelVar ZDelVar (

Use the Return function instead of the Stop function, as this allows the program to be called from other programs, such as operating systems (hmm... MirageOS comes to mind, although BASIC programs cause it to crash upon exit on my Silver Edition)

Note that when using the getKey function while inside a loop, you do not have to set the value to zero, if, and only if, you use a Repeat loop.  These are faster and more accurate.  An example of a getKey loop is shown:

:Repeat K (include = and desired key here, if needed)

:getKey(K

:End

If you used a While loop with getKey, you would first have to delete the getKey variable (why? Because in a Repeat loop, the commands inside the loop are executed at least once, and if no key is pressed the first go-round, the value is zero, and you want a key to be pressed, so there is no value to test, and it continues looping.  In a While loop, the commands are not run at all if the variable to be tested happens to be the desired value BEFORE the first go-round, and thus the loop is skipped), then state the desired value in the While command as follows:

:While Kø105

:getKey(K

:End

In this case, if the ENTER key is pressed, the loop will terminate after all other commands, if there are any, are executed (as in run, not as in killed).  Refer to your calc manual for a list of keycodes (or stay tuned until the end of this document for a complete list, as well as an explanation of the importance of the ON key).

It is my opinion that Repeat loops are best for getKey loops, for reasons stated above.

Instead of using a statement such as:

If Kø0

use:

If K

These are equivalent, due to the binary nature of If statements (0 = false, non-zero = true).  Also, instead of using:

If K=0

use:

If not(K

not( is a function included in the TI-BASIC language to test if a value is equal to zero.

Use as few If statements as possible.  Instead, substitute conditionals, as shown in the following graph screen menu program:

From this:

PROGRAM:GRPHMENU

:Lbl 1

:ClrDraw

:Text(0,8,"Option 1

:Text(6,8,"Option 2

:Text(12,8,"Option 3

:Text(18,8,"Quit

:DelVar X

:Repeat K=105

:getKey->K

:If K:Text(X,0,"[9 spaces]

:If K=25

:X-6->X

:If K=34

:X+6->X

:If X<0

:X+24->X

:If X>18

:X-24->X

:Text(X,0,"=>

:End

:If not(X

:Option 1 code here

:If X=6

:Option 2 code here

:If X=12

:Option 3 code here

:If X=18

:Return

:Goto 1

To this:

:Lbl 1

:ClrDraw

:Text(0,8,"Option 1

:Text(6,8,"Option 2

:Text(12,8,"Option 3

:Text(18,8,"Quit

:DelVar X

:Repeat K=105

:getKey->K

:If K:Text(X,0,"[9 spaces]

:X-6(K=25->X

:X+6(K=34->X

:X+24(X<0->X

:X-24(X>18->X

:Text(X,0,"=>

:End

:If not(X

:Option 1 code here

:If X=6

:Option 2 code here

:If X=12

:Option 3 code here

:If X=18

:Return

:Goto 1

However, this can be optimized even further:

:Lbl 1

:ClrDraw

:Text(0,8,"Option 1

:Text(6,8,"Option 2

:Text(12,8,"Option 3

:Text(18,8,"Quit

:DelVar X

:Repeat K=105

:getKey->K

:If K:Text(X,0,"[9 spaces]

:X-6(K=25)+24not(X+K-25->X

:X+6(K=34)-24(X>18+K-34->X

:Text(X,0,"=>

:End

:If not(X

:Option 1 code here

:If X=6

:Option 2 code here

:If X=12

:Option 3 code here

:If X=18

:Return

:Goto 1

Granted, the third method adds two bytes over the second, but it will cut down on operation time.

However, when using conditionals or If statements, never make an error that I see all too often:

:If 17<A<20

The problem with this is that it will always return a value of 1 (why? Because the only possible outcomes of 17<A are 0 and 1, both of which are less than 20).  This error caused me major problems during the development of BlakJak Pro.  Use

:If 17<A and A<20

instead.

Concerning For loops, omit the step argument as much as possible, unless it is absolutely necessary.  For example, stating a step of one is pointless, as this is the default step value.  Reversing the order of operations can eliminate stating a step of -1.  For example, a simple countdown program:

:ClrHome

:For(X,E3,0,-1

:Output(8,1,X

:If X<E3

:Output(8,4," 

:If X<E2

:Output(8,3," 

:If X<10

:Output(8,2," 

:End

becomes:

:ClrHome

:For(X,0,E3

:Output(8,1,E3-X

:If X>0

:Output(8,4," 

:If X>900

:Output(8,3," 

:If X>990

:Output(8,2," 

:End

This is the same size, yet easier to understand.

However, in some cases, For loops must be left as they are.  A perfect example of this is a portion of the code from my soon-to-be-released Gr(phiË Studio.  The mentioned portion of the program is used to move a selection of the screen in any direction, given the distance to be moved and the range of pixels to be moved.  Here is one of the For statements used to move the selection:

:For(U,C(G>0)+D(G<0),C(G<0)+D(G>0),G-1abs(G

Gesundheit.

It just so happens that this statement is responsible for moving pixels up and down.  To prevent corrupting of the picture accidentally because of overlapping pixels, this statement determines which way the scan goes. (Steal my code, and I will know it; besides, it is useless without the rest of the routine.)

Okay, I know I went loopy covering loops; next subject please.

Lowercase letters are real spiffy.  They can make a program visually pleasing.  However, they have two drawbacks:

1.  you cannot store data to them (some are reserved for system use; the rest you must generate using a lowercase program, such as CalcSys, MirageOS, or OmniCalc)

2.  they are double the size of uppercase letters

The second drawback is the most crucial, due to the nature of this file.  However, I use lowercase letters in almost all of my programs.

Also, use subroutines as much as possible.  Subroutines are programs that are called by other programs to do work for them.  They can be used to repeat functions needed throughout the program, such as data storage, graphics, etc.  I use them all the time.  My also soon-to be-released BlakJak Pro v1.0 uses subroutines to display the cards and to determine whether or not the cards are face cards.  Unfortunately, in this day of graphics, this program is text-based ( But it is only approximately 2.6 kilobytes in size, and features scrolling credits as you quit the program (

A very useful feature for the 83+/SE is large text on the graph screen!  Here's the syntax:

:Text(-1,0,0,"Text here

As far as I know, there is no way to get small text on the homescreen without using assembly programs, often referred to as ASM programs.

As far as the TI-BASIC keycodes are concerned, here they are on the 83 and 83+/SE.  Not sure about the 82, though.

Button


getKey code

Y=


11

WINDOW

12

ZOOM


13

TRACE


14

GRAPH


15

2nd


21

MODE


22

DEL


23

LEFT


24

UP


25

RIGHT


26

ALPHA


31

XT(n


32

STAT


33

DOWN


34

MATH


41

APPS/MATRIX

42

PRGM


43

VARS


44

CLEAR


45

X-1


51

SIN


52

COS


53

TAN


54

^


55

X2


61

,


62

(


63

)


64

/


65

LOG


71

7


72

8


73

9


74

*


75

LN


81

4


82

5


83

6


84

-


85

STO(


91

1


92

2


93

3


94

+


95

0


102

.


103

(-)


104

ENTER


105

Regarding the ON button: it is used to break a BASIC program while it is either running or running out of control (such as your basic ‘This is the song that never ends’ type program) and is similar to the Ctrl-Break sequence often used by Visual Basic programmers.  However, there are certain programs that modify the function of the ON key, which are available at the ticalc.org website.  In these programs, a getKey value of 101 is set for the ON button, and these programs are usually used in other programs which require that the program not be interrupted (i.e. password programs).  A program available on the ticalc.org website that does just this is Safekey by Matt McCutchen, and it is found in the 83+/Assembly/Miscellanneous folder.

Well, I hope you have as much fun as I do while programming, now that you have some very useful info!

Darth Mathias, a.k.a. Matt Offner

Founder and Supreme Ruler of Dark Side Programming

Darth Ferahgo, a.k.a. Jon Volkmer

Number Two and Creator of Text-based Adventure Games

"Mastering the Dark Arts of BASIC"

Optimization

Subroutines

darksideprogramming@yahoo.com

On the ticalc.org website: TI83Plus_BASIC_Wizard

Programmers, away!

