
DOORS

Kerm Martian

http://dcs.cemetech.net

© 2001-2014 Christopher

Doors CSE 8.1

Software Developers’ Kit (SDK)

OORS CSE 8.1 SDK

Kerm Martian and Cemetech

http://dcs.cemetech.net

Christopher “Kerm Martian” Mitchell and Cemetech

SDK

Cemetech

Mitchell and Cemetech

Doors CSE 8 SDK
2 Table of Contents

TABLE OF CONTENTS

Table of Contents ... 2

Chapter 1 Introduction ... 7

Introduction to Developing for Doors CSE ... 7

Using the Tools in This SDK .. 7

Structure of the SDK ... 7

Chapter 2 Overview of Doors CSE BASIC Tools and Features ... 9

Introduction to Doors CSE’s BASIC Execution System .. 9

Basic Headers .. 9

“DCS” Header .. 9

Ignore Program Headers ... 9

BASIC Libraries .. 10

Chapter 3 BASIC Libraries .. 11

Overview ... 11

xLIBC Functions .. 11

Celtic 2 CSE ... 12

Using XLib and Celtic Functions ... 12

Accessing Groups and AppVars ... 13

What Not To Do ... 13

Error Catching and Handling ... 13

BASIC Library Command Reference .. 14

Celtic 2 CSE Routines .. 14

xLIBC Routines .. 14

Celtic 2 CSE Library Routine Details ... 16

ReadLine ... 16

ReplaceLine ... 16

InsertLine.. 16

SpecialChars .. 17

CreateVar .. 17

ArcUnarcVar .. 18

DeleteVar .. 18

DeleteLine .. 18

VarStatus .. 19

BufSprite ... 19

BufSpriteSelect ... 20

Doors CSE 8 SDK
3 Table of Contents

ExecArcPrgm ... 20

DispColor.. 22

xLIBC Functions .. 25

xLIBCSetup... 25

SetupGraphics ... 25

SetSpeed ... 25

SetupColorMode ... 25

UserVariables .. 26

GetUservar .. 26

SetUservar ... 27

AddToUservar ... 27

SubFromUservar ... 27

GetKey ... 27

GetKey ... 27

GetKeyCheckList .. 27

GetKeyArrows ... 27

GetKeyArrowsDiagonals ... 27

GetKeyArrowsCheckTile .. 28

GetKeyArrowsDiagonalsCheckTile .. 28

GetKeyUDLRCheckTileList (DCSE 8.1+ only) .. 28

GetKey8DirCheckTileList (DCSE 8.1+ only) ... 29

DrawMap .. 29

DrawMapA (TI-OS Values) ... 29

DrawMapB (Uservar Values) ... 30

DrawMap_GetTileA (TI-OS Values) ... 30

DrawMap_GetTileB (Uservar Values) ... 30

DrawMap_SetTile (TI-OS Values) .. 31

DrawMap_ReplaceTile (TI-OS Values) .. 31

DrawMap_GetSectionA (TI-OS Values) ... 31

DrawMap_GetSectionB (USERVAR Values) .. 31

DrawSprite ... 31

DrawSpriteA (TI-OS Values) .. 32

DrawSpriteB (Uservar Values) ... 33

Doors CSE 8 SDK
4 Table of Contents

DrawSpriteList8x8A (TIOS Values) .. 33

DrawSpriteList8x8B (Uservar Values) ... 34

DrawSpriteTileBGA (TIOS Values) ... 34

DrawSpriteTileBGB (Uservar Values) .. 34

DrawSpriteCheckCollisionA (TI-OS Values) (DCSE 8.1+ only) .. 35

DrawSpriteSequentialListA (TI-OS Values) (DCSE 8.1+ only) ... 36

DrawSpriteSequentialListB (Uservar Values) (DCSE 8.1+ only) ... 38

DrawSpriteTileBGListA (TI-OS Values) (DCSE 8.1+ only) ... 38

DrawSpriteTileBGListB (Uservar Values) (DCSE 8.1+ only) ... 38

ManagePic ... 39

LoadTilePic (TI-OS Values) ... 39

LoadBGPic (TI-OS Values) .. 39

DisplayBGPic (TI-OS Values) .. 40

DrawPicSectionA (TI-OS Values) ... 40

DrawPicSectionB (Uservar Values) .. 40

LoadSingleTile (TI-OS Values) .. 40

DisplayBGPic32 (TI-OS Values) (DCSE 8.1+ only) .. 41

DrawString ... 41

DrawShape .. 42

GetPixelA (16-bit, TI-OS Values) .. 42

GetPixelB (xLIBC Palette, TI-OS Values) .. 42

SetPixelA (16-bit, TI-OS Values) .. 42

SetPixelB (xLIBC palette, TI-OS Values) ... 42

InvertPixel (TI-OS Values) .. 43

DrawLine (xLIBC palette, TI-OS VALUES) ... 43

InvertLine (TI-OS VALUES) ... 43

DrawRectangle (xLIBC palette, TI-OS VALUES) ... 43

InvertRectangle (TI-OS VALUES).. 44

FillRectangle (xLIBC palette, TI-OS Values) ... 44

InvertFilledRectangle (TI-OS Values) ... 44

DrawCircle (TIOS Values)... 44

DrawFilledCircle (TIOS Values) .. 45

Doors CSE 8 SDK
5 Table of Contents

xLIBCUtility .. 45

GetLCDBuffer (TI-OS Values) ... 45

SetLCDBuffer (TI-OS Values) ... 45

SetGRAMOffset (TI-OS Values) ... 45

GetRand (TI-OS Values) ... 45

UpdateLCD .. 45

Chapter 4 Overview of Doors CSE ASM Tools and Features .. 47

Documentation: The Doors CS Wiki .. 47

Assembling Suite and compile.bat/compile.sh ... 47

Windows Users ... 47

Linux/Mac Users ... 48

Doors CSE 8 Include File .. 48

Doors CSE Tools for ASM Programmers ... 48

Program Headers ... 48

Header Field Types ... 49

App Header ... 50

Chapter 5 ASM Routine Summary .. 52

Graphics Routines .. 53

ClearLCDFull .. 53

ColorLine .. 53

ColorPixel ... 53

ColorRectangle ... 54

DrawSprite_1Bit ... 55

DrawSprite_2Bit ... 55

DrawSprite_4Bit ... 56

DrawSprite_4Bit_Enlarge ... 57

DrawSprite_8Bit ... 57

Math Routines ... 59

MultHE .. 59

MultDEBC ... 59

DivHLC .. 59

RandInt .. 60

Utility Routines ... 61

RunProg .. 61

Chapter 6 Further Reading .. 62

Appendix A License ... 63

Doors CSE 8 SDK
6 Table of Contents

Doors CSE 8 End-User & Developer License ... 63

A.1| Preamble .. 63

A.3| Scope .. 64

A.4| Usage .. 64

A.5| Liability ... 64

A.6| Updates .. 64

Doors CSE 8 SDK
7

Chapter 1
Introduction

CHAPTER 1

INTRODUCTION

Introduction to Developing for Doors CSE
Welcome to the Doors CSE SDK! This document is meant to be a comprehensive overview of

the available tools and features for writing Doors CSE-based TI-BASIC and z80 assembly

language programs. Since this document was written, it is likely that bug fixes, new features,

and additional documentation has been created. Be sure to check http://dcs.cemetech.net

for all of the information in this document and more, as well as the latest beta and final

releases. You can discuss Doors CSE, developing for it, and any other questions and

comments on the Cemetech forum at http://www.cemetech.net/forum.

This document discusses the available tools for BASIC programmers, then for ASM

programmers. Doors CSE does not currently have features from Doors CS like the GUI system,

the Associated Program (AP) system, and Shell Expansions, but future Doors CSE versions

might offer such features. It concludes with a survey of places to get more information as well

as the developer and end-user licenses.

Using the Tools in This SDK
This SDK, besides being an informative document, is also a full set of tools to help you create

BASIC programs and to build and assemble ASM programs for you.

Assembly programmers have a similar Header Creator, tailored to the needs of coders writing

programmers, Appended Library Extensions (ALEs) or Shell Expansions (SEs), as well as a

batch script to compile files, the TASM and Brass assemblers, and the BinPac8x Python-

language linker for cross-platform compilation.

BASIC programmers should use TIFreak8x’s Doors CSE 8 Icon Creator from

http://www.cemetech.net/programs/index.php?mode=file&id=937.

Structure of the SDK

The file structure of this SDK is as follows:

/SDK/

| asm/ Tools for z80 assembly programmers

+-- +-- exec/ Executable .8xp files end up here

| +-- list/ Generated list files are put here

| +-- source/ All source code should be here

| +-- tasm/ Assemblers, linkers, and include files

| +-- compile.bat Windows compile script

| +-- compile.sh Linux/Mac compile script

Doors CSE 8 SDK
8

Chapter 1
Introduction

|

+-- DCSE8_SDK.pdf This document: SDK in PDF form

Doors CSE 8 SDK
9

Chapter 2
Overview of Doors CSE BASIC Tools and Features

CHAPTER 2

OVERVIEW OF DOORS CSE BASIC TOOLS AND FEATURES

Introduction to Doors CSE’s BASIC Execution System
Doors CSE can execute BASIC programs from one of two major systems: from the Doors CSE

desktop or from the desktop via the HomeRun feature that automatically catches any

program execution and properly handles it. From a BASIC standpoint, these two execution

methods are indistinguishable, and all Doors CSE features available to BASIC programs via

one method will also be available via the other method. BASIC programs can take advantage

of two major categories of Doors CSE features: metadata, such as icons, and BASIC library

functions, including those from xLIBC and Celtic 2 CSE. This chapter will examine the

available metadata and header formats in depth, while Chapter 3 will detail the available

BASIC libraries.

Basic Headers
BASIC headers allow the specification of metadata like icons and hide requests. All of the

BASIC headers listed below are specifically designed to not interfere with normal program

operation, so that programs with these headers can be run on any TI-84 Plus C Silver Edition

calculator, even if Doors CSE is not loaded on the calculator. Note that if BASIC libraries are

used (see Chapter 3), then this is no longer the case.

“DCS” Header

The most commonly-used Doors CSE header is the standard “DCS” header. It allows a 16x16-

pixel color icon to be specified. The correct form of these headers includes a double-quote

character at the beginning of the hex string describing the icon. The hex string contains 256

(16x16) hex characters, with 0=transparent, 1=blue, 2=red, up to F=dark gray. The colors are

the same as those used in the TI-OS/TI-BASIC color palette.

Ignore Program Headers

Most program headers add additional data for shells to display. The Ignore Program headers

both do the opposite: they hide a given program from Doors CSE, making it not display that

program on the desktop. These headers are particularly useful for subprograms of main

programs. Both possible Ignore Program headers are shown below; the upper one is for

general programs, while the bottom one is for programs that use or process Ans.

:rand
:Program code

::DCS

:"256-char_hex_icon

:Program code

Doors CSE 8 SDK
10

Chapter 2
Overview of Doors CSE BASIC Tools and Features

BASIC Libraries
Doors CSE includes full supporting libraries for all of the most popular so-called Hybrid BASIC

libraries, namely xLIBC and Celtic 2 CSE. Use of these libraries means that your program will

not be able to be run on any calculator that does not have Doors CSE 8.0 or higher installed.

On the other hand, the libraries afford your program much more power and control than pure

BASIC programs can muster.

:Ans
:Program code

Doors CSE 8 SDK
11

Chapter 3
BASIC Libraries

CHAPTER 3

BASIC LIBRARIES

Overview
Doors CSE combines Celtic 2 CSE, based on work by Iambian Zenith, with xLIBC, a new library

created by Patrick “tr1p1ea” Prendergast. Celtic 2 CSE primarily deals with creating,

modifying, deleting, and using programs and AppVars; it also offers two sprite functions.

xLIBC is primarily a graphics library.

Users can disable the Hybrid BASIC libraries from within Doors CSE’s options screen, but if

they are left enabled, and the HomeRun feature is enabled, then the BASIC libraries are

available regardless of whether your BASIC program is run from within Doors CSE or from the

TI-OS homescreen. This chapter will introduce each of the libraries, including the arguments

and usage of each, as well as mention some notes and caveats for each library.

xLIBC Functions
xLIBC is written by Patrick Prendergast, aka tr1p1ea. It is based on the concepts used to create

xLIB for the TI-83 Plus/TI-84 Plus, included in Doors CS 7.2 for the monochrome calculators.

xLIBC uses the TI-84 Plus C Silver Edition in half-resolution (160x240-pixel) mode, allowing

one half of the LCD buffer to be modified off-screen while the other half is displayed. tr1p1ea

has written an xLIBC Tutorial with an example program. Doors CSE has xLIBC compatibility

based directly on tr1p1ea’s original code. xLIBC can be detected with the following code

sequence:

If this routine continues through to the program code, it guarantees that both xLIBC and

Celtic 2 CSE are available for the program to use.

xLIBC uses a 256-color palette for all sprites, tilemaps, shapes, text, and fills. The palette is as

follows:

::DCS

:"256-char_hex_icon

:If 80>det([[20

:Then

:Disp "Get Doors CSE to run this:","http://dcs.cemetech.net

:Return:End
:Program code goes here

Doors CSE 8 SDK
12

Chapter 3
BASIC Libraries

Celtic 2 CSE
Celtic 2 CSE is intended to add many additional and powerful functions on top of the XLib

routines. All Celtic functions start with the det() token. You can use the same sequence as

above to make sure xLIBC and Celtic 2 CSE are present.

Using XLib and Celtic Functions

Celtic 2 CSE catches certain commands as inputs for the application. The first argument for

any of these caught commands is always the command's function number, which tells the

application what it should do. These commands are the following:

The det(tokens will work as they normally do if used as they were originally intended. Doors

CSE/Celtic 2 CSE is smart enough to know whether or not the command is for the TI-OS or for

itself (with the sole exception of finding the determinant of a 1x1 matrix, but who would do

that?). The real(token cannot be used as it was originally intended as per the precedent set

by xLIBC, and Doors CSE uses the real(token to make it completely-compatible with xLIBC.

The arguments after the function number are inputs for that particular function. If a real

number (ie, not a complex number, and not a string) is specified, it can either be an

immediate value (such as 42) or a letter variable containing the real number (such as K).

Understand that this number MUST be real and not a complex number (such as 3+2i); such a

value will make Doors CSE choke in a heartbeat. You can, however, pass negative numbers as

arguments. The result will simply be the two's compliment of said number. Signed math is not

performed.

If a string is specified in an argument, it can either be an immediate value (such as "this is a

string") or a string variable (such as Str7). A few functions may make further restrictions, but

they will be clearly explained in the command set listing. Sometimes one of these commands

will NOT output a value. If the command set does not mention an output, do not assume

there will be any.

Examples of commands are as follows (closing parentheses added for readability):

:det(

:real(

Doors CSE 8 SDK
13

Chapter 3
BASIC Libraries

The command reference later in this chapter define the output of each function. If some sort

of number or string is output, it will be that function's result and can then be used as part of

another function.

Accessing Groups and AppVars

Some Celtic 2 CSE commands will require a string containing the name of a program file.

Most commands will allow you to substitute the name of a program file for the name of an

application variable (appvar). The main benefit of using appvars is that it doesn't clutter the

programs menu, and they aren't readily accessible by the user. The downside is that

applications that use appvars will EXPECT their own appvars to remain intact.

In order to tell a command that it should be accessing an appvar instead of a program file,

insert the "rowSwap(" token at the beginning of the name. An example:

Notes: You do not close the parenthesis on the rowSwap(token, as this will cause "File Not

Found" errors at worst or if you're creating a file, an extra token at the end of the file that

renders it inaccessible from any BASIC programs. Also, you can use lowercase letters to refer

to AppVars but NOT programs. If you try to name a program using lowercase letters, you'll get

similar results as closing that parenthesis, except much worse.

What Not To Do

Obviously, don't try to use Celtic 2 CSE in ways it wasn't intended. You can abuse Doors

CSE/Celtic 2 CSE to perform what you want, but neither I nor Iambian is responsible if Doors

CSE crashes or freezes because you tried to input incorrect or illegal arguments.

Error Catching and Handling

If a trappable error has occurred, Celtic 2 CSE will output a string containing the code of that

error instead of letting the system run its course (either your standard ERR: message, or a

system crash). The following codes describe the error:

Long Code Description
.P:IS:FN A variable already exists and Celtic 2 CSE will not overwrite it
.NUMSTNG Specified line is past end of file
.NULLSTR An input of some kind exists but contains nothing.
.L:NT:FN A line of code or an object was not found during a search.
.S:NT:FN An input string was not found.
.S:FLASH String is archived
.S:NT:ST Variable is not a string
.NO:MEM Not enough memory to complete operation

:"FOO"->Str9:1:det(1) //Outputs the first line of program FOO

:"rowSwap(FOO"->Str9:1:det(1) //Outputs the first line of AppVar FOO

: det(3) //Grab the special characters
:real(2,0,0) //Performs a getKey-like operation

Doors CSE 8 SDK
14

Chapter 3
BASIC Libraries

.E:2:LNG Entry was too long.

.S:2:LNG String was too long.

.NULLVAR Some provided variable did not contain any useful content.

.P:NT:FN A program or file you searched for doesn't exist.

.PGM:ARC A program or file you selected is archived; cannot be edited.

.NULLINE The line that was found didn't contain anything.

.T:NT:FN Specified variable not found.

.P:IS:FN Program exists, but shouldn’t.

.SUPPORT Whatever happened means it was not supported by Celtic 2 CSE.

All that these "errors" indicate is that the normal, documented function of the command you

used could not be run to completion. This may or may not be a good thing, especially if the

commands are used in a function outside of its documented use, but may otherwise be

perfectly safe. An example might be attempting to read a line out of a file simply to determine

whether or not it even exists.

BASIC Library Command Reference

Celtic 2 CSE Routines

• ReadLine - det(0), Str0=program name, Ans=line number

• ReplaceLine - det(1), Str0=program name, Ans=line number, Str9=replacement

• InsertLine - det(2), Str0=program name, Ans=line number, Str9=contents

• SpecialChars - det(3)

• CreateVar - det(4), Str0=program/AppVar name

• ArcUnarcVar - det(5), Str0=program/AppVar name

• DeleteVar - det(6), Str0=program/AppVar name

• DeleteLine - det(7), Str0=program name, Ans=line number

• VarStatus - det(8), Str0=program name

• BufSprite - det(9,width,X,Y), Str9=sprite data

• BufSpriteSelect - det(10,width,X,Y,start,length), Str9=sprite data

• ExecArcPrgm - det(11,FN,NUMBER)

• DispColor - det(12,FG_LO,FG_HI,BG_LO,BG_HI)

xLIBC Routines

• xLIBCSetup - real(0,FN,Value)

• UserVariables - real(1,FN,Uservar_Num[,Value])

• GetKey - real(2,FN[,Args])

• DrawMap - real(3,FN[,Args])

• DrawSprite - real(4,FN[,Args])

• ManagePic - real(5,FN[,Args])

• DrawString - real(6,FN[,Args])

Doors CSE 8 SDK
15

Chapter 3
BASIC Libraries

• DrawShape - real(7,FN[,Args])

• xLIBCUtility - real(8,FN,Val)

• UpdateLCD - real(10)

Doors CSE 8 SDK
16

Chapter 3
BASIC Libraries

Celtic 2 CSE Library Routine Details

ReadLine

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:ReadLine

Description

Reads a line from a program or AppVar. If Ans (line number) equals 0, then Theta will be

overwritten with the number of lines in the program being read. Useful for editors, curiosities,

and verification. Otherwise, Ans=1 is the first line of the program, Ans=2 is the second, and so

on.

Technical Details

Arguments

det(0)

Str0: Name of program to read from

Ans: Line number to read from (first line is "1")

Outputs

Str9: Contents of line read. Error "..NULLINE" if the line is empty. May also contain other error

codes if conditions are wrong.

ReplaceLine

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:ReplaceLine

Description

Replaces (overwrites) a line in a program or AppVar. Ans=1 is the first line of the program,

Ans=2 is the second, and so on.

Technical Details

Arguments

det(1)

Str0: Name of program to read from

Ans: Line number to replace (first line is "1")

Str9: Contents to replace the line with

Outputs

Str9: Intact if no error occurred; otherwise, contains an error code.

InsertLine

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:InsertLine

Doors CSE 8 SDK
17

Chapter 3
BASIC Libraries

Description

Inserts a line into a program or AppVar. Ans=1 is the first line of the program, Ans=2 is the

second, and so on.

Technical Details

Arguments

det(2)

Str0: Name of program to write to

Ans: Line number to write to(first line is "1")

Str9: Material to insert into a program. The line that was occupied is shifted down one line

and this string is inserted into the resulting location.

Outputs

Str9: Intact if no error occurred; otherwise, contains an error code.

SpecialChars

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:SpecialChars

Description

Generates a two-character string containing the STO character and double-quote character,

in that order.

Technical Details

Arguments

det(3)

(No other arguments)

Outputs

Str9: Sto and doublequote characters, in that order. Use substrings to extract them. If using

the standard version of Celtic, the string will be 9 characters long, the other 7 being junk. This

should not affect the integrity of string just as long as you extract only the first two characters.

CreateVar

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:CreateVar

Description

Create a program variable or an AppVar given a name.

Technical Details

Arguments

det(4)

Str0: Name of program or AppVar to create.

Doors CSE 8 SDK
18

Chapter 3
BASIC Libraries

Outputs

Str9: Intact if nothing went wrong. Otherwise, an error code results. If successful, you will be

able to read the first line of the newly created program as a null line.

Str0: Intact with program's name to be created

ArcUnarcVar

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:ArcUnarcVar

Description

Archive/unarchive a program variable given a name.

Technical Details

Arguments

det(5)

Str0: Name of program or AppVar to move between Archive and RAM.

Outputs

Moves a program or AppVar into RAM if it was in Archive, or into Archive if it was in RAM.

DeleteVar

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DeleteVar

Description

Delete a program variable or an AppVar given a name.

Technical Details

Arguments

det(6)

Str0: Name of program or AppVar to delete.

Outputs

The indicated program or AppVar is deleted.

DeleteLine

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DeleteLine

Description

Deletes a line from a program or AppVar. Ans=1 is the first line of the program, Ans=2 is the

second, and so on.

Technical Details

Arguments

det(7)

Doors CSE 8 SDK
19

Chapter 3
BASIC Libraries

Str0: Name of program to delete from

Ans: Line number to delete (first line is "1"). If Ans=0, this routine instead computes the

number of lines in the program and returns them in Theta.

Outputs

Str9: Contains an error code if an error occurs.

VarStatus

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:VarStatus

Description

Output status string describing a program or AppVar's current state, including size, visibility,

and more.

Technical Details

Arguments

det(8)

Str0: Name of program to examine

Outputs

Str9: Contains 9 byte output code.

1st character: "A"=Archived "R"=RAM "

2nd character: "V"=Visible "H"=Hidden

3rd character: "L"=Locked "W"=Writable "O"=AppVar

4th character: --RESERVED-- (filled with space char)

Five character string afterward is the size of data portion of variable.

Example: "AVL 00314" = Archived, visible, locked, and 314 bytes.

BufSprite

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:BufSprite

Description

Draws indexed (palette-based) sprite onto the LCD and into the graph buffer. Copies the

contents of the graph buffer under the sprite back into Str9, so that you can "erase" the sprite

back to the original background. Good for moving player characters, cursors, and the like.

Interacts politely with Pic variables and OS drawing commands like Line(, Circle(, Text(, and so

on. If you want to draw a lot of different sprites to the screen and won't need to erase them

back to the background, then use BufSpriteSelect instead.

Technical Details

Doors CSE 8 SDK
20

Chapter 3
BASIC Libraries

Arguments

det(9,width,X,Y)

Str9 = Sprite data as ASCII hex, one nibble per byte. The digits 1-F are valid colors (1=blue,

2=red, 3=black, etc), while G will cause the routine to skip to the next line. 0 is normal

transparency, and lets the background show through. H is a special kind of transparency that

erases back to transparency instead of leaving the background color intact.

X,Y = Coordinates of top-left corner of sprite

width = Sprite width (height gets computed)

Outputs

Str9: Same length as input, contains the previous contents of the graph buffer where the

sprite was drawn. You can call det(9...) again without changing Str9 to effectively undo the

first sprite draw.

BufSpriteSelect

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:BufSpriteSelect

Description

Draws indexed (palette-based) sprite onto the LCD and into the graph buffer. Good for

drawing tilemaps, backgrounds, and other sprites that you won't want to individually erase. If

you want to be able to erase the sprite drawn and restore the background, you should

consider BufSprite instead. This routine takes an offset into Str9 and a sprite length as

arguments, so that you can pack multiple sprites of different lengths into Str9.

Technical Details

Arguments

det(10,width,X,Y,start,length)

Str9 = Sprite data of one or more sprites as ASCII hex, one pixel per character. The digits 1-F

are valid colors (1=blue, 2=red, 3=black, etc), while G will cause the routine to skip to the next

line. 0 is normal transparency, and lets the background show through. H is a special kind of

transparency that erases back to transparency instead of leaving the background color intact.

X,Y = Coordinates of top-left corner of sprite

width = Sprite width (height gets computed)

start = Offset into Str9 of the start of pixel data. 0 is the first character, not 1

length = Length of the sprite data in characters

Outputs

Sprite drawn to LCD and stored to graph buffer.

ExecArcPrgm

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:ExecArcPrgm

Doors CSE 8 SDK
21

Chapter 3
BASIC Libraries

Description

Ans contains the name of the program you want to use in a string, then you use the function,

then you run the generated temporary program file according to temp_prog_number. But,

you'll need to know the function codes to further explain how this works:

0: Copy file to a file numbered by temp_prog_number
1: Delete a temporary file numbered by temp_prog_number
2: Delete all temporary files.

For example, say you wanted to copy an archived program "FOO" to prgmXTEMP002, do the

following:

"FOO":det(11,0,2):prgmXTEMP002

If you wanted to do this to an ASM program "BAR" and have it copied to the 12th temporary

file, do the following:

"BAR":det(11,0,12):Asm(prgmXTEMP012)

If you decided you are done with the copy of "FOO" from the first example and you wanted to

delete it, do this:

det(11,1,2)

That will delete prgmXTEMP002 but will not touch the original file. If you want to clean up

(get rid of all temp files), you can do the following:

det(11,2

Files will not be overwritten if you attempt to copy to a preexisting temp file.

Technical Details

Arguments

"PRGMNAME

det(11,function,temp_prog_number)

You can run the resultant temporary program via one of the following, depending on format:

:prgmXTEMP0XX or :Asm(prgmXTEMP0XX)

Note that only prgmXTEMP000 to prgmXTEMP015 are valid; anything above prgmXTEMP015

will return Undefined.

Outputs

See description.

Doors CSE 8 SDK
22

Chapter 3
BASIC Libraries

DispColor

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DispColor

Description

Changes the foreground and background color for Output(, Disp, and Pause to arbitrary 16-

bit colors, or disables this feature. Due to technical limitations, the foreground and

background for Text() cannot be changed to arbitrary colors.

Technical Details

Arguments

det(12,FG_LO,FG_HI,BG_LO,BG_HI

FG_LO: Low byte of foreground color

FG_HI: High byte of foreground color

BG_LO: Low byte of background color

BG_HI: High byte of background color

Because of TI-OS argument-parsing limitations, foreground and background colors must be

provided as a sequence of two numbers in the range 0-255. Sample low and high bytes are

below.

To disable this mode, you should call det(12,300) before exiting your program.

ALICEBLUE ____ 223 247

ANTIQUEWHITE ____ 90 255

AQUA ____ 255 7

AQUAMARINE ____ 250 127

AZURE ____ 255 247

BEIGE ____ 187 247

BISQUE ____ 56 255

BLACK ____ 0 0

BLANCHEDALMOND ____ 89 255

BLUE ____ 31 0

BLUEVIOLET ____ 92 137

BROWN ____ 69 161

BURLYWOOD ____ 208 221

CADETBLUE ____ 244 92

CHARTREUSE ____ 224 127

CHOCOLATE ____ 67 211

CORAL ____ 234 251

CORNFLOWERBLUE ____ 189 100

CORNSILK ____ 219 255

CRIMSON ____ 167 216

CYAN ____ 255 7

DARKBLUE ____ 17 0

DARKCYAN ____ 81 4

DARKGOLDENROD ____ 33 188

DARKGRAY ____ 85 173

DARKGREEN ____ 32 3

DARKKHAKI ____ 173 189

DARKMAGENTA ____ 17 136

DARKOLIVEGREEN ____ 69 83

DARKORANGE ____ 96 252

DARKORCHID ____ 153 153

DARKRED ____ 0 136

DARKSALMON ____ 175 236

DARKSEAGREEN ____ 241 141

Doors CSE 8 SDK
23

Chapter 3
BASIC Libraries

DARKSLATEBLUE ____ 241 73

DARKSLATEGRAY ____ 105 42

DARKTURQUOISE ____ 122 6

DARKVIOLET ____ 26 144

DEEPPINK ____ 178 248

DEEPSKYBLUE ____ 255 5

DIMGRAY ____ 77 107

DODGERBLUE ____ 159 28

FIREBRICK ____ 4 177

FLORALWHITE ____ 222 255

FORESTGREEN ____ 68 36

FUCHSIA ____ 31 248

GAINSBORO ____ 251 222

GHOSTWHITE ____ 223 255

GOLD ____ 160 254

GOLDENROD ____ 36 221

GRAY ____ 16 132

GREEN ____ 0 4

GREENYELLOW ____ 229 175

HONEYDEW ____ 254 247

HOTPINK ____ 86 251

INDIANRED ____ 235 202

INDIGO ____ 16 72

IVORY ____ 254 255

KHAKI ____ 49 247

LAVENDER ____ 63 231

LAVENDERBLUSH ____ 158 255

LAWNGREEN ____ 224 127

LEMONCHIFFON ____ 217 255

LIGHTBLUE ____ 220 174

LIGHTCORAL ____ 16 244

LIGHTCYAN ____ 255 231

LIGHTGOLDENRODYELLOW ____ 218 255

LIGHTGRAY ____ 154 214

LIGHTGREEN ____ 114 151

LIGHTPINK ____ 184 253

LIGHTSALMON ____ 15 253

LIGHTSEAGREEN ____ 149 37

LIGHTSKYBLUE ____ 127 134

LIGHTSLATEGRAY ____ 83 116

LIGHTSTEELBLUE ____ 59 182

LIGHTYELLOW ____ 252 255

LIME ____ 224 7

LIMEGREEN ____ 102 54

LINEN ____ 156 255

MAGENTA ____ 31 248

MAROON ____ 0 128

MEDIUMAQUAMARINE ____ 117 102

MEDIUMBLUE ____ 25 0

MEDIUMORCHID ____ 186 186

MEDIUMPURPLE ____ 155 147

MEDIUMSEAGREEN ____ 142 61

MEDIUMSLATEBLUE ____ 93 123

MEDIUMSPRINGGREEN ____ 211 7

MEDIUMTURQUOISE ____ 153 78

MEDIUMVIOLETRED ____ 176 192

MIDNIGHTBLUE ____ 206 24

MINTCREAM ____ 255 247

MISTYROSE ____ 60 255

MOCCASIN ____ 54 255

NAVAJOWHITE ____ 245 254

NAVY ____ 16 0

OLDLACE ____ 188 255

OLIVE ____ 0 132

OLIVEDRAB ____ 100 108

ORANGE ____ 32 253

ORANGERED ____ 32 250

ORCHID ____ 154 219

PALEGOLDENROD ____ 85 239

PALEGREEN ____ 211 159

PALETURQUOISE ____ 125 175

PALEVIOLETRED ____ 146 219

Doors CSE 8 SDK
24

Chapter 3
BASIC Libraries

PAPAYAWHIP ____ 122 255

PEACHPUFF ____ 215 254

PERU ____ 39 204

PINK ____ 25 254

PLUM ____ 27 221

POWDERBLUE ____ 28 183

PURPLE ____ 16 128

RED ____ 0 248

ROSYBROWN ____ 113 188

ROYALBLUE ____ 92 67

SADDLEBROWN ____ 34 138

SALMON ____ 14 252

SANDYBROWN ____ 44 245

SEAGREEN ____ 74 44

SEASHELL ____ 189 255

SIENNA ____ 133 162

SILVER ____ 24 198

SKYBLUE ____ 125 134

SLATEBLUE ____ 217 106

SLATEGRAY ____ 18 116

SNOW ____ 223 255

SPRINGGREEN ____ 239 7

STEELBLUE ____ 22 68

TAN ____ 177 213

TEAL ____ 16 4

THISTLE ____ 251 221

TOMATO ____ 8 251

TURQUOISE ____ 26 71

VIOLET ____ 29 236

WHEAT ____ 246 246

WHITE ____ 255 255

WHITESMOKE ____ 190 247

YELLOW ____ 224 255

YELLOWGREEN ____ 102 158

Thanks to Shaun "Merthsoft" McFall for the original color.h data used for this table.

Outputs

See description.

Doors CSE 8 SDK
25

Chapter 3
BASIC Libraries

xLIBC Functions

xLIBCSetup

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:xLIBCSetup

Description

Utility functions used when setting up an xLIBC program. real(0,0) gets the current xLIBC

version, real(0,1,<bool>) turns half-resolution mode on or off, and real(0,20,<bool>) turns fast

(15MHz) mode on or off.

Technical Details

GetXLIBCVersion

real(0,0): Returns version in Ans

SetupGraphics

real(0,1,1): Enable half-resolution (160x240-pixel) mode

real(0,1,0,REDRAW_STATUS): Disable half-resolution (160x240-pixel) mode

REDRAW_STATUS = 1 to redraw the status area at the top of the screen, 0 otherwise.

This function will set the calculator to half h-resolution/interlaced mode. Please note that ALL

xLIB drawing functions expect the calculator to be in this mode. THIS MUST BE TURNED OFF

BEFORE EXITING YOUR PROGRAM OR THE TIOS WILL BE STUCK IN THIS MODE! Also remember

to redraw the status bar up the top of the screen or the TIOS will look funny. To disable 160

mode and redraw the status bar:

real(0,1,0,1

(If you forget to set this mode you will see how xLIB buffers each side of GRAM. This might be

useful for debugging.

SetSpeed

real(0,2,0): Disable fast (15MHz) mode, switching to 6MHz mode

real(0,2,1): Enable fast (15MHz) mode

Note that the default CPU speed is 15MHz

SetupColorMode

real(0,3,VALUE):

VALUE defines action to take:

0 = Full color

1 = 8-color

2 = ColorInvert

3 = ColorInvertOff (restore to normal)

4 = FillScreen

Doors CSE 8 SDK
26

Chapter 3
BASIC Libraries

5 = SetColorOffset (DCSE 8.1+ only)

To invert the colors on the screen:

real(0,3,2

To restore the colors back to normal:

real(0,3,2

This is because inverting something twice will restore it back to normal. To restore the colors

back to normal when you don't know the previous state of the screen:

real(0,3,3

To fill the screen (active GRAM side only) with a color from the standard xLIB 256-color

palette:

real(0,3,4,COLOR,UPDATELCD

To set the COLOR_OFFSET value which is used by sprite and shape routines (note that VALUE

is between 0-255)

This will change the color values per pixel of sprites as they are drawn to the LCD. It can be

used for special effects (magic animations for example):

real(0,3,5,VALUE

UserVariables

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:UserVariables

Description

The TI-84+CSE version of xLIB (xLIBC) has some key differences from its previous counterparts.

One of the most obvious ones is the facility to utilize 'internal user variables' for data storage

and calculations as opposed to using TI-OS variables. Note that most functions have versions

(usually version 'A' (like 'DRAWMAPA' for example) still take TI-OS variables as arguments.

These user vars help xLIBC update data in the functions themselves and can save calculation

time in your program.

IMPORTANT - User variables are only temporary and are stored at PlotsScreen (RAM: $987C).

Please ensure that you are not using this memory area while executing your program as it

may produce unexpected results.

Technical Details

GetUservar

real(1,0,Uservar_Num): Get the value of the given Uservar

Doors CSE 8 SDK
27

Chapter 3
BASIC Libraries

SetUservar

real(1,1,Uservar_Num,Value): Set the value of the given Uservar to Value

AddToUservar

real(1,2,Uservar_Num,Value): Add Value to the value of the given Uservar

SubFromUservar

real(1,3,Uservar_Num,Value): Subtract Value from the value of the given Uservar

GetKey

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:GetKey

Description

These routines have been significantly overhauled from the monochrome xLIB getKey

function.

Technical Details

GetKey

real(2,0,0): Key code stored to Ans (as per _getCSC codes)

GetKeyCheckList

real(2,0,GETKEY_CHECKNUM,GETKEY_KEYVAL,GETKEY_USERVAR,GETKEY_VALUE...etc)

GETKEY_CHECKNUM = number of checks to perform (length of list to check against)

GETKEY_KEYVAL = key value to check for

GETKEY_USERVAR = Uservar to update if key value is pressed

GETKEY_VALUE = value to update Uservar by if key is pressed

Checks for a list of keypresses and updates the appropriate user variables

GetKeyArrows

real(2,1,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y):

USERVAR_X = user variable index holding x coordinate to update (0-255)

USERVAR_Y = user variable index holding y coordinate to update (0-255)

VALUE_X = amount to update uservar by if left/right is pressed

VALUE_Y = amount to update uservar by if up/down is pressed

Checks for up,down,left,right arrows and updates the specified user variables:

 If up is pressed then USERVAR_Y = USERVAR_Y - VALUE_Y

 If down is pressed then USERVAR_Y = USERVAR_Y + VALUE_Y

 If left is pressed then USERVAR_X = USERVAR_X - VALUE_X

 If right is pressed then USERVAR_X = USERVAR_X + VALUE_X

GetKeyArrowsDiagonals

real(2,2,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y):

Doors CSE 8 SDK
28

Chapter 3
BASIC Libraries

Checks for up,down,left,right and diagonal arrows and updates the specified user variables:

 If up is pressed then USERVAR_Y = USERVAR_Y - VALUE_Y

 If down is pressed then USERVAR_Y = USERVAR_Y + VALUE_Y

 If left is pressed then USERVAR_X = USERVAR_X - VALUE_X

 If right is pressed then USERVAR_X = USERVAR_X + VALUE_X

 If up+left is pressed then USERVAR_Y = USERVAR_Y - VALUE_Y, USERVAR_X = USERVAR_X -

VALUE_X

 If up+right is pressed then USERVAR_Y = USERVAR_Y - VALUE_Y, USERVAR_X = USERVAR_X

+ VALUE_X

 If down+left is pressed then USERVAR_Y = USERVAR_Y + VALUE_Y, USERVAR_X =

USERVAR_X - VALUE_X

 If down+right is pressed then USERVAR_Y = USERVAR_Y + VALUE_Y, USERVAR_X =

USERVAR_X + VALUE_X

GetKeyArrowsCheckTile

real(2,3,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y,USERVAR_MAPWIDTH,COLLISION

TILE,MAPSTRING,X0,Y0,X1,Y1):

USERVAR_MAPWIDTH = width of tilemap in tiles (uservar 0-255)

COLLISIONTILE = upper limit of walkable tiles (any tile less than this will be walkable)

MAPSTRING = string variable holding tilemap data (0-10)

X0 = left x coordinate of collision box

Y0 = top y coordinate of collision box

X1 = right x coordinate of collision box

Y1 = bottom y coordinate of collision box

This performs the same as the above GetKeyArrows function but will only update the user

variables if the move is to a walkable tile in the supplied tilemap. The X0,Y0,X1,Y1 is used to

specify a 'collision box' around the x/y coordinate. Anything inside this coordinate must be

walkable for the function to update the user variables.

GetKeyArrowsDiagonalsCheckTile

real(2,4,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y,USERVAR_MAPWIDTH,COLLISION

TILE,MAPSTRING):

Refer to the GetKeyArrowsCheckTile function; this adds diagonal keypresses as well.

GetKeyUDLRCheckTileList (DCSE 8.1+ only)

real(2,5,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y,USERVAR_MAPWIDTH,COLLISION

TILE,MAPSTRING,X0,Y0,X1,Y1

USERVAR_MAPWIDTH = width of tilemap in tiles (uservar 0-255)

COLLISIONTILE = upper limit of walkable tiles (any tile less than this will be walkable)

MAPSTRING = string variable holding tilemap data (0-10)

Doors CSE 8 SDK
29

Chapter 3
BASIC Libraries

X0 = left x coordinate of collision box

Y0 = top y coordinate of collision box

X1 = right x coordinate of collision box

Y1 = bottom y coordinate of collision box

This function is the same as the above however it will return information regarding any

keypresses and any collided tiles in a 'real list' contained in with the format {KEY_PRESS,

NUM_COLLIDED_TILES, COLLIDED_TILES_LIST} where:

KEY_PRESS = -1,0,1,2,3 = NOARROW,UP,DOWN,LEFT,RIGHT

NUM_COLLIDED_TILES = number of tiles collided against given the arguments in the call

COLLIDED_TILES_LIST = list of tiles collided against given the arguments in the call

GetKey8DirCheckTileList (DCSE 8.1+ only)

real(2,6,USERVAR_X,USERVAR_Y,VALUE_X,VALUE_Y,USERVAR_MAPWIDTH,COLLISION

TILE,MAPSTRING,X0,Y0,X1,Y1

Refer to the above function; adds diagonal keypresses as well.

DrawMap

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DrawMap

Description

Draw a tilemap. Tile data is stored in strings as hex encoded ASCII. For example, a 4x4 tilemap

array (base 10 numbers):

[01,01,01,01]

[01,95,95,01]

[01,44,44,01]

[01,01,01,01]

would translate to:

"01010101015F5F01012C2C0101010101"->Str0

NOTE: You must load tiledata into temp memory before drawing tilemaps. See ManagePic.

Technical Details

DrawMapA (TI-OS Values)

real(3,0,X,Y,MAPWIDTH,MAPSTRING,XSTART,YSTART,XEND,YEND,UPDATELCD):

X = map x in tiles

Y = map y in tiles

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

XSTART = start x tile position on LCD to draw from (0-19)

Doors CSE 8 SDK
30

Chapter 3
BASIC Libraries

YXSTART = start y tile position on LCD to draw from (0-14)

XEND = end x tile position on LCD to draw from (0-19)

YEND = end y tile position on LCD to draw from (0-14)

UPDATELCD = 0/1 to update LCD after drawing

Example: To draw a tilemap starting at 0,0 in a 32x32 tilemap and drawn with a 1 tile border

around the outside (18x12 tiles) with tiledata stored in TIOS string 9:

real(3,0,0,0,32,9,1,1,18,13,1

DrawMapB (Uservar Values)

real(3,1,USERVAR_X,USERVAR_Y,USERVAR_MAPWIDTH,MAPSTRING,XSTART,YSTART,X

END,YEND,UPDATELCD):

USERVAR_X = map x in tiles (uservar 0-255)

USERVAR_Y = map y in tiles (uservar 0-255)

USERVAR_MAPWIDTH = width of tilemap in tiles (uservar 0-255)

MAPSTRING = string variable holding tilemap data (0-10)

XSTART = start x tile position on LCD to draw from (0-19)

YXSTART = start y tile position on LCD to draw from (0-14)

XEND = end x tile position on LCD to draw from (0-19)

YEND = end y tile position on LCD to draw from (0-14)

UPDATELCD = 0/1 to update LCD after drawing

DrawMap_GetTileA (TI-OS Values)

real(3,2,X,Y,MAPWIDTH,MAPSTRING,XOFFSET,YOFFSET):

X = map x in tiles

Y = map y in tiles

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

XOFFSET = x offset for X value

YOFFSET = y offset for Y value

Returns tile at map(X,Y) in Ans

DrawMap_GetTileB (Uservar Values)

real(3,3,USERVAR_X,USERVAR_Y,USERVAR_MAPWIDTH,MAPSTR,XOFFSET,YOFFSET):

X = map x in tiles (uservar 0-255)

Y = map y in tiles (uservar 0-255)

MAPWIDTH = width of tilemap (uservar 0-255)

MAPSTR = string variable holding tilemap data (0-10)

XOFFSET = x offset for X value

YOFFSET = y offset for Y value

Doors CSE 8 SDK
31

Chapter 3
BASIC Libraries

Returns tile at map(X,Y) in Ans

DrawMap_SetTile (TI-OS Values)

real(3,4,X,Y,MAPWIDTH,MAPSTRING,TILEID,XOFFSET,YOFFSET):

X = map x in tiles

Y = map y in tiles

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

TILEID = index of tile to write into map

XOFFSET = x offset for X value

YOFFSET = y offset for Y value

Sets tile at map(x,y) in tilemap string(0-10)

DrawMap_ReplaceTile (TI-OS Values)

real(3,5,MAPSTRING,CHECKNUM,TILEID0,REPLACETILID0,TILEID1,REPLACETILID1...etc):

MAPSTRING = string variable holding tilemap data (0-10)

CHECKNUM = number of checks to perform (length of list to replace)

TILEID0 = 1st tile id to search for

REPLACETILEID0 = tile to replace 1st tile id if found

Replaces all occurrences of tileidX with replacetileidX for CHECKNUM

DrawMap_GetSectionA (TI-OS Values)

real(3,6,VALUE_XY,SECTIONSIZE):

VALUE_XY = x/y value in *** pixels ***

SECTIONSIZE = section width/height in tiles

This function will give you the section in multiples of SECTIONSIZE depending on VALUE_XY

stored to Ans. It effectively performs int((SECTIONSIZE * 8) / VALUE_XY) * SECTIONSIZE. This is

useful for drawing different sections of a tilemap depending on x/y values

DrawMap_GetSectionB (USERVAR Values)

real(3,6,VALUE_XY,SECTIONSIZE):

VALUE_XY = x/y value in pixels

SECTIONSIZE = section width/height in tiles

This function is the same as above, however it references an internal uservar for the

VALUE_XY argument

DrawSprite

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DrawSprite

Doors CSE 8 SDK
32

Chapter 3
BASIC Libraries

Description

Renders a sprite to the screen.

NOTE: You must load tiledata into temp memory before drawing tilemaps. See ManagePic.

Technical Details

DrawSpriteA (TI-OS Values)

real(4,0,X,Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,PICINDEXSTA

RT,PICINDEX0,PICINDEX1...etc):

X = x value

Y = y value

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

PICINDEXSTART = pic index to start drawing from (in following list)

PICINDEX0 = pic index in sprite data sheet

Note that sprites are drawn from 8x8 chunks (or tiles) and are stored in tile/sprite data

appvars that must be loaded into memory before use (see MANAGEPIC). For sprites larger

than 8x8 the function takes a list of arguments for each index of the sprite (in 8x8 chunks).

The sprites are drawn column first, so a 16x16 sprite list layout:

| 1 | 3 |

| 2 | 4 |

24x24 sprite list layout:

| 1 | 4 | 7 |

| 2 | 5 | 8 |

| 3 | 6 | 9 |

Example: To draw an 8x8 sprite at 32, 32 with a pic index of 155 that has a transparent color

index of 248:

Doors CSE 8 SDK
33

Chapter 3
BASIC Libraries

real(4,0,32,32,1,1,248,1,0,155

Example: To draw a 16x16 sprite at 32,32 with a pic index list of 12,13,14,15 that has a

transparent color index 248:

real(4,0,32,32,2,2,248,1,0,12,13,14,15

You can use the PICINDEXSTART argument to specify which sprite to draw out of a list of

sprites. This can be useful for drawing a differen sprite depending on a direction variable. For

example drawing an 8x8 sprite where pic index 10=up, 11=down, 12=left & 13=right, and you

have a direction variable "A" which holds 0=up, 1=down, 2=left & 3=right you can do:

real(4,0,32,32,1,1,248,1,A,10,11,12,13

This will select index 10 if A=0, 11 if A=1, 12 if A=2 & 13 if A=3 and so on.

DrawSpriteB (Uservar Values)

real(4,1,USERVAR_X,USERVAR_Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPD

ATELCD,PICINDEXSTART,PICINDEX0,PICINDEX1...etc):

X = x value

Y = y value

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

PICINDEXSTART = pic index to start drawing from (in following list)

PICINDEX0 = pic index in sprite data sheet

See above, the only difference is that it will reference user variables for x/y.

DrawSpriteList8x8A (TIOS Values)

real(4,2,LISTCOUNT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,X0,Y0,PICINDEX0,X1,

Y1,PICINDEX1...etc:

LISTCOUNT = number of sprites in list

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

X0 = x value for 1st sprite in list

Doors CSE 8 SDK
34

Chapter 3
BASIC Libraries

Y0 = y value for 1st sprite in list

PICINDEX0 = pic index for 1st sprite in list

This function draws a list of 8x8 sprites (max 32 sprites per call). Example: To draw 3 sprites at

(10,10),(20,20),(30,30) with pic indicies 12,14,16 with a transparent index of 248:

real(4,2,3,0,0,248,1,10,10,12,20,20,14,30,30,16

DrawSpriteList8x8B (Uservar Values)

real(4,3,LISTCOUNT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,X0,Y0,PICINDEX0,X1,

Y1,PICINDEX1...etc:

LISTCOUNT = number of sprites in list

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

X0 = x value for 1st sprite in list

Y0 = y value for 1st sprite in list

PICINDEX0 = pic index for 1st sprite in list

This function is the same as above but it takes USERVAR values for X0,Y0,X1,Y1 etc

DrawSpriteTileBGA (TIOS Values)

real(4,4,X,Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,MAPWIDTH,

MAPSTRING:

X = x value

Y = y value

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

This function will draw the tiles for width*height at a specific sprite coordinate. The resultant

tiles will be aligned to the map (it will only draw at intervals of 8-pixels). This is useful for

restoring a tilemap background that has been overwritten by a sprite

DrawSpriteTileBGB (Uservar Values)

Doors CSE 8 SDK
35

Chapter 3
BASIC Libraries

real(4,5,X,Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,MAPWIDTH,

MAPSTRING:

X = x value

Y = y value

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, any color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

This function is the same as above but references user variables instead of TI-OS values.

DrawSpriteCheckCollisionA (TI-OS Values) (DCSE 8.1+ only)

real(4,6,COUNT,X,Y,W,H,CX0,CY0,CW0,CH0....CXn,CYn,CWn,CHn

COUNT = number of coordinates to check against

X = master X to test list of coordinates against

Y = master Y to test list of coordinates against

W = master W to test list of coordinates against

H = master H to test list of coordinates against

CX0 = first X to test against master X

CY0 = first Y to test against master Y

CW0 = first W to test against master W

CH0 = first H to test against master H

CXn = nth X to test against master X

CYn = nth Y to test against master Y

CWn = nth W to test against master W

CHn = nth H to test against master H

nth should be equal to COUNT

This function will test the rectangular coordinates specified by the 'master X,Y,W,H' against

each iteration of rectangular coordinates from CX0,CY0,CW0,CH0 to CXn,CYn,CWn,CHn and

will return 0 or 1 in Ans where 0 = no collision between the 'master set' and the list and 1 = a

collision with at least 1 set is found. A list of collided coordinate indexes in the user-defined

'real list' "XL" in the format:

{TOTAL_COORDS_COLLIDED,INDEX0...INDEXn} where:

Doors CSE 8 SDK
36

Chapter 3
BASIC Libraries

TOTAL_COORDS_COLLIDED = total number of rectangular indexes in the call that collide with

the 'master set'

INDEX0 = first index where 0 = the rectangular coordinates [CX0,CY0,CW0,CH0] and n would

equal the [CX0,CY0,CW0,CH0]

Note that user-define list "XL" is overwritten if it already exists. For example, rectangles at:

X = 10

Y = 10

W = 8

H = 8

Tested against others where:

X = 15
Y = 15
W = 8
H = 8

X = 48
Y = 32
W = 16
H = 16

X = 8
Y = 0
W = 64
H = 16

The call would be: real(4,6,3,10,10,8,8,15,15,8,8,48,32,16,16,8,0,64,16

And the result would be:

Ans = 1

XL = {1,2,0,2

Ans=1 = collision found

{1 = collision found (would be 0 if no collisions occurred)

2 = number of collisions found

0 = collision with index 0

2 = collision with index 2

Index 1 is the square for which there was no collision.

You can check if there is a collision by using:

If Ans

If LXL(1)

Or by a similar method.

DrawSpriteSequentialListA (TI-OS Values) (DCSE 8.1+ only)

real(4,8,X,Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,PICINDEXSTA

RT,PICINDEX0

X = x value

Y = y value

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

Doors CSE 8 SDK
37

Chapter 3
BASIC Libraries

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent color index, and color in the sprite that matches this will be drawn

transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

PICINDEXSTART = pic index to start drawing from (in following list)

PICINDEX0 = pic index in sprite data sheet

This function will draw a sprite that of any size as per the same fashion as DRAWSPRITEA with

the only difference being that you DON’T need to specify each PICINDEX for a largesprite,

rather you only need to specify the FIRST PICINDEX. This means that your 8x8 sprite chunks

will need to follow each other in your TILEPIC in SEQUENTIAL ORDER. The makeup of a large

sprite is the same:

16x16 sprite list layout:

| 1 | 3 |

| 2 | 4 |

24x24 sprite list layout:

| 1 | 4 | 7 |

| 2 | 5 | 8 |

| 3 | 6 | 9 |

For both of the above you only need to specifiy the PICINDEX '1' (along with appropriate

WIDTH/HEIGHT ETC) to draw. The advantage is that you save space in BASIC code, speed of

execution and you can maximise the space in your TILEPICS. The drawback is that the layout

of sprites requires more work when creating your TILEPICS. You can use the PICINDEXSTART

argument to have largesprite 'frames' as each PICINDEX you supply will be the STARTING

INDEX for each frame so having:

real(4,8,10,10,2,2,0,0,248,1,0,10,20

Will draw a 16x16 sprite with the 4 '8x8 chunks' starting at INDEX 10 (10,11,12,13). If you

change the PICINDEXSTART argument to 1 then the 16x16 sprite will be made up of the 4 '8x8

chunks' starting at INDEX 20 (20,21,22,23).

Doors CSE 8 SDK
38

Chapter 3
BASIC Libraries

DrawSpriteSequentialListB (Uservar Values) (DCSE 8.1+ only)

real(4,9,USERVAR_X,USERVAR_Y,WIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPD

ATELCD,PICINDEXSTART,PICINDEX0

X = x value (uservar 0-255)

Y = y value (uservar 0-255)

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent colour index, and colour in the sprite that matches this will be

drawn transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

PICINDEXSTART = pic index to start drawing from (in following list)

PICINDEX0 = pic index in sprite data sheet

This function is the same as above however it takes references to internal USERVARS as

opposed to values directly.

DrawSpriteTileBGListA (TI-OS Values) (DCSE 8.1+ only)

real(4,10,LISTCOUNT,LISTWIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,

MAPWIDTH,MAPSTRING,X0,Y0...Xn,Yn

LISTCOUNT = number of tiles in list

WIDTH = width of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

HEIGHT = height of sprite in 8x8 chunks (an 8x8 sprite is 1, 16x16 is 2, 12x12 is also 2 etc)

XOFFSET = offset for x value

YOFFSET = offset for y value

TRANSINDEX = transparent colour index, and colour in the sprite that matches this will be

drawn transparent (0-255)

UPDATELCD = 0/1 to update LCD after drawing

MAPWIDTH = width of tilemap

MAPSTRING = string variable holding tilemap data (0-10)

X0 = first X value to draw tile at

Y0 = first Y value to draw tile at

Xn = last X value to draw tile at

Yn = last Y value to draw tile at

This function will draw the tiles for width*height at the sprite coordinate listed from X0,Y0 to

Xn,Yn. The resultant tiles will be aligned to the map (it will only draw at intevals of 8-pixels).

This is useful for restoring a tilemap background that has been overwritten by a list of sprites.

As mentioned this function is the same as DRAWSPRITETILEBG just with a list.

DrawSpriteTileBGListB (Uservar Values) (DCSE 8.1+ only)

Doors CSE 8 SDK
39

Chapter 3
BASIC Libraries

real(4,11,LISTCOUNT,LISTWIDTH,HEIGHT,XOFFSET,YOFFSET,TRANSINDEX,UPDATELCD,

MAPWIDTH,MAPSTRING,X0,Y0...Xn,Yn

MAPWIDTH = width of tilemap (uservar 0-255)

MAPSTRING = string variable holding tilemap data (0-10)

X0 = first X value to draw tile at (uservar 0-255)

Y0 = first Y value to draw tile at (uservar 0-255)

Xn = last X value to draw tile at (uservar 0-255)

Yn = last Y value to draw tile at (uservar 0-255)

This function is the same as above how it takes references to internal USERVARS as opposed

to direct values in the call.

ManagePic

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:ManagePic

Description

Necessary step before using DrawSprite or DrawMap.

Technical Details

LoadTilePic (TI-OS Values)

real(5,0,PICSLOT):

Ans = AppVar name (as string, no rowSwap(prefix)

PICSLOT = 0/1 pic slot (temp RAM) to load tilepic into (slot0=tiles 0-127, slot1=tiles128-255)

This function loads custom tilepic image appvars (name stored as a string in ANS) into temp

RAM (slot0/1). These images are 128x64 pixels using the custom xLIBC palette. They each hold

128 * 8x8 tiles.

picslot0 = tiles loaded into 0-127

picslot1 = tiles loaded into 128-255

You must load a tilepic into temp RAM before using DRAWMAP or DRAWSPRITE. Example: To

load a tilepic named "TESTILE" into slot0:

:"TESTTILE

:real(5,0,0

LoadBGPic (TI-OS Values)

real(5,1,BGSLOT):

Ans = AppVar name (as string, no rowSwap(prefix)

BGSLOT = 0/1 bg slot (temp RAM) to load bgpic into

Doors CSE 8 SDK
40

Chapter 3
BASIC Libraries

This function loads custom bgpic image appvars (name stored as a string in ANS) into temp

RAM (slot0/1). These images are 80x60 pixels using the custom xLIBC palette. These images

are low resolution and can be useful for low detail backgrounds.

DisplayBGPic (TI-OS Values)

real(5,2,UPDATELCD):

Ans = AppVar name (as string, no rowSwap(prefix)

UPDATELCD = 0/1 to update LCD after drawing

This function will display a custom bgpic image appvar (name stored as a string in ANS). To

display a bgpic named "BGTEST":

:"BGTEST

:real(5,2,1

DrawPicSectionA (TI-OS Values)

real(5,3,X,Y,WIDTH,HEIGHT,BGSLOT,UPDATELCD):

X = source X in bgpic

Y = source Y in bgpic

WIDTH = width of section to draw

HEIGHT = height of section to draw

BGSLOT = source BGPIC slot 0/1

UPDATELCD = 0/1 to update LCD after drawing

This function will draw a section of a BGPIC to a specified location on the screen. You must

have loaded a BGPIC into temp RAM before using this function.

DrawPicSectionB (Uservar Values)

real(5,4,X,Y,WIDTH,HEIGHT,BGSLOT,UPDATELCD):

X = source X in bgpic

Y = source Y in bgpic

WIDTH = width of section to draw

HEIGHT = height of section to draw

BGSLOT = source BGPIC slot 0/1

UPDATELCD = 0/1 to update LCD after drawing

This function is the same as above but takes user variables as arguments instead.

LoadSingleTile (TI-OS Values)

real(5,5,TILEID)

Ans = Tile data

TILEID = id of tile to write data to (0-255)

Doors CSE 8 SDK
41

Chapter 3
BASIC Libraries

This function will write data from a string stored in ANS to the specified TILEID in TEMPRAM.

Tile data in ANS is stored as a 'HEX encoded string' (2 bytes per pixel) where each HEX pair

represents a colour index in the standard xLIB palette. Tile data is arraged in columns and

from left to right like so:

00 08 16 24 32 40 48 56

01 09 17 25 33 41 49 57

02 10 18 26 34 42 50 58

03 11 19 27 35 43 51 59

04 12 20 28 36 44 52 60

05 13 21 29 37 45 53 61

06 14 22 30 38 46 54 62

07 15 23 31 39 47 55 63

So the string in ANS would look like:

"000102030405060708091011121314151617181920212223242526272829303132333

43536373839404142434445464748495051525354555657585960616263

This way you can manually write tile/sprite data to TEMPRAM without the need for TILEPIC's.

Note that tiles are 8x8 pixels in size.

DisplayBGPic32 (TI-OS Values) (DCSE 8.1+ only)

"APPVARNAME

real(5,6,UPDATELCD

UPDATELCD = 0/1 to update LCD after drawing

This function will display a custom 32 colour 160x120 image (scaled to fullscreen) appvar

(name stored as a string in ANS). To display a bgpic named "BG32TEST":

"BG32TEST

real(5,6,1

DrawString

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DrawString

Description

This function draws a colored string with a transparent background using the custom xLIBC

palette, in the custom xLIBC 8x8 font. The NEWLINECHAR code can be used kind of like a

carriage return (X is reset and Y=Y+8). The string data is stored in Ans.

Technical Details

real(6,0,X,Y,COLOR,NEWLINECHAR,UPDATELCD):

Ans = Input string

X = x value

Doors CSE 8 SDK
42

Chapter 3
BASIC Libraries

Y = y value

COLOR = color index (standard xLIBC palette)

NEWLINECHAR = ascii character code that indicates a newline. String moved down 1 line and

x is reset

UPDATELCD = 0/1 to update LCD after drawing

DrawShape

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:DrawShape

Description

This family of functions draws and reads pixels and shapes. See the beginning of this chapter

for the palette used for all functions in this family.

Technical Details

GetPixelA (16-bit, TI-OS Values)

real(7,0,X,Y):

X = x value

Y = y value

This function returns a 16-bit color code from LCD GRAM in Ans

GetPixelB (xLIBC Palette, TI-OS Values)

real(7,1,X,Y):

X = x value

Y = y value

This function returns a custom xLIBC palette color code from LCD GRAM in Ans

SetPixelA (16-bit, TI-OS Values)

real(7,2,X,Y,COLORHIGH,COLORLOW,SIZE,UPDATELCD):

X = x value

Y = y value

COLORHIGH = high 8-bits of 16-bit color code

COLORLOW = low 8-bits of 16-bit color code

SIZE = size of pixel to draw

UPDATELCD = 0/1 to update LCD after drawing

This function sets a 16-bit color pixel in LCD GRAM

SetPixelB (xLIBC palette, TI-OS Values)

real(7,3,X,Y,COLOR,SIZE,UPDATELCD):

X = x value

Y = y value

COLOR = color index (standard xLIBC palette)

Doors CSE 8 SDK
43

Chapter 3
BASIC Libraries

SIZE = size of pixel to draw

UPDATELCD = 0/1 to update LCD after drawing

This function sets a customer xLIBC palette color pixel in LCD GRAM

InvertPixel (TI-OS Values)

real(7,4,X,Y,SIZE,UPDATELCD):

X = x value

Y = y value

SIZE = size of pixel to draw

UPDATELCD = 0/1 to update LCD after drawing

This function inverts a pixel in LCD GRAM

DrawLine (xLIBC palette, TI-OS VALUES)

real(7,5,X0,Y0,X1,Y1,COLOR,UPDATELCD):

X0 = left x value

Y0 = top y value

X1 = right x value

Y1 = bottom y value

COLOR = color index (standard xLIBC palette)

UPDATELCD = 0/1 to update LCD after drawing

This function draws a line from X0,Y0 to X1,Y1 using the custom xLIBC palette

InvertLine (TI-OS VALUES)

real(7,6,X0,Y0,X1,Y1,UPDATELCD):

X0 = left x value

Y0 = top y value

X1 = right x value

Y1 = bottom y value

UPDATELCD = 0/1 to update LCD after drawing

This function draws a line from X0,Y0 to X1,Y1 with inverted colors

DrawRectangle (xLIBC palette, TI-OS VALUES)

real(7,7,X0,Y0,WIDTH,HEIGHT,COLOR,UPDATELCD):

X0 = left x value

Y0 = top y value

WIDTH = width of rectangle

HEIGHT = height of rectangle

COLOR = color index (standard xLIBC palette)

UPDATELCD = 0/1 to update LCD after drawing

Doors CSE 8 SDK
44

Chapter 3
BASIC Libraries

This function draws a rectangle starting at X0,Y0 for WIDTH,HEIGHT using the custom xLIBC

palette

InvertRectangle (TI-OS VALUES)

real(7,8,X0,Y0,WIDTH,HEIGHT,UPDATELCD):

X0 = left x value

Y0 = top y value

WIDTH = width of rectangle

HEIGHT = height of rectangle

UPDATELCD = 0/1 to update LCD after drawing

This function draws a rectangle starting at X0,Y0 for WIDTH,HEIGHT with inverted colors

FillRectangle (xLIBC palette, TI-OS Values)

real(7,9,X0,Y0,WIDTH,HEIGHT,COLOR,UPDATELCD):

X0 = left x value

Y0 = top y value

WIDTH = width of rectangle

HEIGHT = height of rectangle

COLOR = color index (standard xLIBC palette)

UPDATELCD = 0/1 to update LCD after drawing

This function draws a filled rectangle starting at X0,Y0 for WIDTH,HEIGHT using the custom

xLIBC palette

InvertFilledRectangle (TI-OS Values)

real(7,10,X0,Y0,WIDTH,HEIGHT,UPDATELCD):

X0 = left x value

Y0 = top y value

WIDTH = width of rectangle

HEIGHT = height of rectangle

UPDATELCD = 0/1 to update LCD after drawing

This function draws a filled rectangle starting at X0,Y0 for WIDTH,HEIGHT with inverted colors

DrawCircle (TIOS Values)

real(7,11,XCENTRE,YCENTRE,RADIUS,COLOR,UPDATELCD:

XCENTRE = centre x value

YCENTRE = centre y value

RADIUS = radius of circle

COLOR = color index (standard xLIBC palette)

UPDATELCD = 0/1 to update LCD after drawing

Doors CSE 8 SDK
45

Chapter 3
BASIC Libraries

This function will draw a circle (outline only) with its centre at XCENTRE,YCENTRE for RADIUS

using the custom xLIBC palette

DrawFilledCircle (TIOS Values)

real(7,12,XCENTRE,YCENTRE,RADIUS,COLOR,UPDATELCD:

XCENTRE = centre x value

YCENTRE = centre y value

RADIUS = radius of circle

COLOR = color index (standard xLIBC palette)

UPDATELCD = 0/1 to update LCD after drawing

This function will draw a filled circled with its centre at XCENTRE,YCENTRE for RADIUS using

the custom xLIBC palette.

xLIBCUtility

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:xLIBCUtility

Description

Assorted xLIBC utility functions.

Technical Details

GetLCDBuffer (TI-OS Values)

real(8,0)

This function returns 0/1 = which side of the GRAM buffer to mark as active for drawing in Ans

SetLCDBuffer (TI-OS Values)

real(8,1,VALUE):

VALUE = 0/1 which side if the GRAM buffer to mark as active for drawing

SetGRAMOffset (TI-OS Values)

real(8,2,VALUE):'

VALUE = value to offset the LCD by

This function will offset the LCD by VALUE. This is useful for screen shaking effects etc.

GetRand (TI-OS Values)

real(8,3,VALUE):

VALUE = (0-255) upper bound of random number

This function returns a random integer between 0-VALUE in Ans

UpdateLCD

http://dcs.cemetech.net/index.php/DCSE:BasicLibs:UpdateLCD

Doors CSE 8 SDK
46

Chapter 3
BASIC Libraries

Description

Updates the LCD.

Technical Details

real(10)

This function updates the LCD. Effectively it switches positions in LCD GRAM.

Doors CSE 8 SDK
47

Chapter 4
Overview of Doors CSE ASM Tools and Features

CHAPTER 4

OVERVIEW OF DOORS CSE ASM TOOLS AND FEATURES

Doors CSE offers extensive tools for burgeoning ASM programmers to explore the power and

capability of the shell. This SDK contains everything you need to turn your source code into

executable programs to load on your favorite calculator or emulator, as well as more than

enough documentation to get you there. If you get stuck, remember to come to the

Cemetech forum (http://www.cemetech.net) and ask any questions, explain any comments,

or expound any criticisms that you may have.

This SDK is specifically tailored to work in 32-bit and 64-bit environments, under Windows

2000 through Windows 8 and above, on Mac OS X, and on most popular Linux distributions.

There are some prerequisites, as noted in the appropriate sections below.

Documentation: The Doors CS Wiki
While this extensive document contains a wealth of up-to-date, carefully-checked

information, new features are always being added to Doors CSE, bugfixes are occasionally

implemented, and mistakes are sometimes found. Be sure to frequent the Doors CS wiki at

http://dcs.cemetech.net to view the latest documentation and look for new versions of Doors

CS and Doors CSE.

Assembling Suite and compile.bat/compile.sh
In the interest of making the process of creating programs for Doors CSE as painless and

straightforward as possible, this SDK contains a complete toolchain to turn source code into

.8xp files. Place your source code in the /asm/source folder; indeed, two sample programs

have been included. If you have any include files, be sure to put them in the /asm/tasm

folder. In a command prompt, you will be typing either “compile docde7” (on Windows) or

“./compile.sh docde7” (on Linux) if your program was docde7.asm or docde7.z80. The script

will compile your program with Brass. Executable .8xp files end up in the /asm/exec directory,

and List files containing annotated source go in the /asm/list/ directory. To recap:

Windows Users

To compile docde7.asm or docde7.z80 into DOCDE7.8xp, open a command prompt ([Win][R],

cmd, [enter]), use cd to navigate to the \asm\ directory of this SDK, and then type:

compile docde7

(or compile docde7.asm or compile docde7.z80). You no longer need Python, unless

you are using BinPac8x.

Doors CSE 8 SDK
48

Chapter 4
Overview of Doors CSE ASM Tools and Features

Linux/Mac Users

To compile docde7.asm or docde7.z80 into DOCDE7.8xp, open a terminal, use cd to navigate

to the /asm/ directory of this SDK, and then type:

./compile.sh docde7

(or ./compile.sh docde7.asm or ./compile docde7.z80). In some circumstances it

may be necessary to chmod +x compile.sh. You must have the program “mono” to assemble

using Brass; you no longer need Python unless you’re using BinPac8x. Please consult your

distribution’s documentation about how to install packages.

Doors CSE 8 Include File
The Doors CSE 8 include file (dcse8.inc) is optimized for use with the included compilation

package. Simply #include “dcse8.inc” after you #include “ti83plus.inc”, and everything

should work properly. If there are any problems that you can’t fix on your own, please report

them on the Cemetech forum. The include files defines all of the routines in this document

for ASM programmers.

Doors CSE Tools for ASM Programmers

Program Headers

The Doors CSE header for simple executables follows a standard form, new for Doors CSE 8.0

and differing widely from the format used in Doors CS 7.x. Without further ado, the most

minimal Doors CS header:

; Program Name:

; Author:

; Version:

; Date:

; Written for Doors CSE 8.0 and higher (http://dcs.cemetech.net)

.nolist

#include "ti84pcse.inc"

#include "dcse.inc"

.list

 .org UserMem

BinaryStart:

 .db $EF,$11 ;OpenLib(2 2

 .db "D",$BB,$BF,$BB,$BF,$BB,$C2,$BB,$C3,"CSE",$11,$3F

 ; 14 16 (tokenized "DoorsCSE"

 .db $EF,$12,$3F ;ExecLib 3 19

 .db $D5,$3F ;Return 2 21

 .db tExtTok,tAsm84CPrgm,$3F ; 3 24 total

HeaderStart:

 .dw ASMStart-HeaderStart ;offset to code

 ; Header sections start here

 .dw 10

Doors CSE 8 SDK
49

Chapter 4
Overview of Doors CSE ASM Tools and Features

 .db ASMHEADER_FIELD_TYPE_LIB ;== 3

 .db "DoorsCSE",8,0 ;Lib name, min major version, min minor version

 .dw SECTIONSIZE ;(excludes type byte)

 .db SECTIONTYPE

 .db ...data...

 .dw SECTIONSIZE ;(excludes type byte)

 .db SECTIONTYPE

 .db ...data... ;0 or more header fields in total

 .dw 0 ;End of header field: 0 bytes of data

 .db $ff ;End of header field: type 255

ASMStart:

.relocate UserMem

ProgramStart:

 ...code...

.endrelocate

.end

If you want to add features like icons and descriptions, you will need to add those sections to

the header.

Header Field Types

Note: Most of these fields are optional. The Type 3 header is not optional for Doors CSE 8.0+

programs.

0: Description. Data is variable-length: zero-terminated string. Short descriptions are

recommended.

1: Icon. Data is variable length.

• Offset 0: Icon type (1 byte).

o Type 0: 32*32-pixel icon, 2-bit color (4 colors), 8-byte (4-color) palette

o Type 1: 32*32-pixel icon, 1-bit color (2 colors), 4-byte (2-color) palette

o Type 2: 16*16-pixel icon, 4-bit color (16 colors), 32-byte (16-color) palette

• Offset 1: Palette (bytes as indicated above)

• Offset 1+(palette size): Icon width, in displayed pixels. 32 for icon types 0-2.

• Offset 2+(palette size): Icon height, in displayed pixels. 32 for icon types 0-2.

• Offset 3+(palette size): Icon data

2: Author name. Data is a zero-terminated, variable-length string. Short names are

recommended.

3: Required library. Data is fixed-length at 10 bytes.

• Offset 0: Library name (8 bytes, zero-padded)

• Offset 8: Minimum required major library version (1 byte)

Doors CSE 8 SDK
50

Chapter 4
Overview of Doors CSE ASM Tools and Features

• Offset 9: Minimum required minor library version (1 byte)

4: Half-Resolution. If present, shell will set half-resolution mode before executing

program. Zero-length data.

255: End of Header. Must be at the end of every header. Zero-length data.

App Header

Doors CSE 8.1 and above can list and execute standard TI-OS Applications (Apps). While Doors

CSE 8 can display unmodified Apps, you can also give your Apps special header fields that

Doors CSE will recognize, and which will not interfere with the TI-OS running your App.

Doors CSE 8.1 recognizes a single header field, containing a 32x32-pixel icon. It is placed

within the standard App header, and has field type 290 with size 2 bytes. The 2-byte data is a

little-endian pointer to an icon formatted according to the icon guidelines shown above. The

example below shows the 290 header field in action.

; App Name:

; Author:

; Version:

; Date:

; Written for Doors CSE 8.1 and higher (http://dcs.cemetech.net)

.binarymode intel ; TI-83+ Application

.nolist

#include "ti84pcse.inc"

.list

NUM_PAGES = 1

.defpage 0, 16*1024, $4000 ; Page 0 definition

; Add additional page definitions as needed

.page 0 ; Start page 0

.echoln "-Page 0----------------------"

 ; Master Field

 .db 80h, 0Fh, 0, 0, 0, 0

 ; Signing Key ID

 .db 80h, 12h, 1, 15 ; 15 for the TI-84+CSE

 ;revision

 .db 80h,21h,8 ; 8

 .db 80h,31h,1 ; Pre-release

 ; Name

 .db 80h, 44h, "AoE2"

 ; Disable TI splash screen.

 .db 80h, 90h

 ; Pages

 .db 80h, 81h, NUM_PAGES

 ; Date stamp. Apparently, the calculator doesn't mind if you put

 ; nothing in this.

 .db 03h, 22h, 09h, 00h

 ; Date stamp signature. Since nothing ever checks this, there's no

 ; reason ever to update it. Or even have data in it.

 .db 02h, 00

Doors CSE 8 SDK
51

Chapter 4
Overview of Doors CSE ASM Tools and Features

 ; Doors CSE 8 Icon

 .db 29h, 02h

 .dw AppIcon

 ; Final field

 .db 80h, 70h

ASMStart:

 ; Your App's code goes here

 bjump(_jforcecmdnochar)

AppIcon:

Icon_Start:

 .db 2

 ;Icon type: 32x32, 2-bit color

 .db $ff,$ff,$d6,$99,$8c,$51,$73,$6d

 .db $ad,$54,$31,$85,$52,$89,$20,$e3

 .db $62,$a7,$72,$44,$93,$27,$51,$83

 .db $c4,$09,$f5,$8e,$9a,$04,$9a,$c9 ;32-byte (16-color)

palette

 .db 32,32

 ;Image dimensions, for the sprite routine

 .db $00,$00,$01,$23,$34,$10,$00,$00

 .db $00,$01,$55,$33,$63,$56,$10,$00

 .db $00,$17,$24,$28,$97,$33,$71,$00

 .db $00,$7a,$89,$66,$95,$b6,$27,$00

 .db $06,$8c,$aa,$a9,$9b,$77,$32,$60

 .db $07,$da,$99,$aa,$8b,$77,$64,$70

 .db $47,$ba,$9a,$a9,$9b,$77,$87,$74

 .db $4b,$ec,$39,$9a,$cb,$57,$a7,$52

 .db $47,$ba,$2a,$cc,$ea,$95,$a8,$72

 .db $17,$7e,$3a,$dd,$ec,$b5,$85,$71

 .db $05,$be,$26,$ca,$9e,$55,$85,$70

 .db $04,$7b,$23,$be,$eb,$65,$55,$20

 .db $00,$55,$33,$3a,$f3,$55,$75,$00

 .db $00,$05,$63,$3f,$f6,$35,$50,$00

 .db $01,$26,$86,$8f,$f8,$58,$62,$10

 .db $00,$14,$23,$33,$33,$32,$41,$00

Icon_End:

 .fill 256, 0 ;Your App must be >256 bytes,

or the TI-OS will reject it

 ;Remove this for Apps that are

already >256 bytes

.end

Doors CSE 8 SDK
52

Chapter 5
ASM Routine Summary

CHAPTER 5

ASM ROUTINE SUMMARY

Doors CS contains an extensive library of routines to be used by z80 Assembly programmers.

It also provides many BASIC libraries, as summarized in Chapter 3 of this document. The

available ASM routines fall into five major categories, all exhaustively detailed herein:

• Graphics Routines

o ClearLCDFull

o ColorLine

o ColorPixel

o ColorRectangle

o DrawSprite_1Bit

o DrawSprite_2Bit

o DrawSprite_4Bit

o DrawSprite_4Bit_Enlarge

o DrawSprite_8Bit

• Math Routines

o MultHE

o MultDEBC

o DivHLC

o RandInt

• Utility Routines

o RunProg

Doors CSE 8 SDK
53

Chapter 5
ASM Routine Summary

Graphics Routines

ClearLCDFull

http://dcs.cemetech.net/index.php/DCSE:ClearLCDFull

Description

Clears the entire LCD to white. Takes about 2.957M cycles.

Technical Details

(None)

Inputs

None

Outputs

Entire LCD is cleared to white.

Destroyed

All

ColorLine

http://dcs.cemetech.net/index.php/DCSE:ColorLine

Description

Draws a color line routine to the LCD using Bresenham's line algorithm.

Technical Details

Beware of saving and restoring iy. If your program quits with a corrupted iy, Doors CSE and/or

the TI-OS will crash.

Inputs

de = x0

bc = y0

hl = x1

ix = y1

iy = 16-bit color

Outputs

Line drawn to LCD.

Destroyed

All

ColorPixel

http://dcs.cemetech.net/index.php/DCSE:ColorPixel

Doors CSE 8 SDK
54

Chapter 5
ASM Routine Summary

Description

Colors a pixel on the LCD at the given coordinates using the specified color.

Technical Details

Beware of saving and restoring iy. If your program quits with a corrupted iy, Doors CSE and/or

the TI-OS will crash.

Inputs

hl = x

de = y

iy = 16-bit color

Outputs

Pixel drawn to LCD.

Destroyed

All

ColorRectangle

http://dcs.cemetech.net/index.php/DCSE:ColorRectangle

Description

Colors or inverts a rectangular area of the LCD.

Technical Details

This routine generally colors in a rectangular area of the LCD. However, color bc=$1337 is a

special case; this color makes the routine invert all the colors on the screen by XORing each

16-bit pixel with $FFFF. Also, this routine can only display rectangles at even coordinates

(h=10 means top-left X=20, for example), and only even widths are possible (d=15 is 30 pixels

wide). This limitation allows X coordinates and widths to fit in 8-bit registers.

Inputs

h = top-left x (note: X-coordinate divided by 2!)

l = top-left y

d = width

e = height

bc = 16-bit color. Color $1337 is a special case.

Outputs

Rectangular area colored or inverted on LCD.

Destroyed

All

Doors CSE 8 SDK
55

Chapter 5
ASM Routine Summary

DrawSprite_1Bit

http://dcs.cemetech.net/index.php/DCSE:DrawSprite_1Bit

Description

Draws a 1-bit (2-color) sprite to the LCD.

Technical Details

This routine draws an arbitrary-sized sprite to the LCD. In Doors CSE 8.0, it is implemented to

allow any 16-bit position and any 8-bit width and height for sprites. It will sanely handle

sprites that are partially off-screen by not drawing them at all. In future Doors CSE versions, it

will perform proper clipping to display the onscreen portions of partially off-screen sprites.

Inputs

de = top-left x

hl = top-left y

ix = pointer to sprite data with the following format:

.dw pointer_to_palette

.db widthpx, heightpx

.db bitpacked_padded_rows...

The routine accepts any 16-bit x-coordinate and any 16-bit y-coordinate. Widths must be at

most 255 pixels; heights must be at most 240 pixels. Note: After Doors CSE 8.0, this routine

will properly handle transparency at the edges of sprites with widths not divisible by 8, and

clipping of partially off-screen sprites.

Outputs

Sprite drawn to the LCD.

Destroyed

All

DrawSprite_2Bit

http://dcs.cemetech.net/index.php/DCSE:DrawSprite_2Bit

Description

Draws a 2-bit (4-color) sprite to the LCD.

Technical Details

This routine draws an arbitrary-sized sprite to the LCD. In Doors CSE 8.0, it is implemented to

allow any 16-bit position and any 8-bit width and height for sprites. It will sanely handle

sprites that are partially off-screen by not drawing them at all. In future Doors CSE versions, it

will perform proper clipping to display the onscreen portions of partially off-screen sprites.

Doors CSE 8 SDK
56

Chapter 5
ASM Routine Summary

Inputs

de = top-left x

hl = top-left y

ix = pointer to sprite data with the following format:

.dw pointer_to_palette

.db widthpx, heightpx

.db bitpacked_padded_rows...

The routine accepts any 16-bit x-coordinate and any 16-bit y-coordinate. Widths must be at

most 255 pixels; heights must be at most 240 pixels. Note: After Doors CSE 8.0, this routine

will properly handle transparency at the edges of sprites with widths not divisible by 8, and

clipping of partially off-screen sprites.

Outputs

Sprite drawn to the LCD.

Destroyed

All

DrawSprite_4Bit

http://dcs.cemetech.net/index.php/DCSE:DrawSprite_4Bit

Description

Draws a 4-bit (16-color) sprite to the LCD.

Technical Details

This routine draws an arbitrary-sized sprite to the LCD. In Doors CSE 8.0, it is implemented to

allow any 16-bit position and any 8-bit width and height for sprites. It will sanely handle

sprites that are partially off-screen by not drawing them at all. In future Doors CSE versions, it

will perform proper clipping to display the onscreen portions of partially off-screen sprites.

Inputs

de = top-left x

hl = top-left y

ix = pointer to sprite data with the following format:

.dw pointer_to_palette

.db widthpx, heightpx

.db bitpacked_padded_rows...

The routine accepts any 16-bit x-coordinate and any 16-bit y-coordinate. Widths must be at

most 255 pixels; heights must be at most 240 pixels. Note: After Doors CSE 8.0, this routine

will properly handle transparency at the edges of sprites with widths not divisible by 8, and

clipping of partially off-screen sprites.

Doors CSE 8 SDK
57

Chapter 5
ASM Routine Summary

Outputs

Sprite drawn to the LCD.

Destroyed

All

DrawSprite_4Bit_Enlarge

http://dcs.cemetech.net/index.php/DCSE:DrawSprite_4Bit_Enlarge

Description

Draws a 4-bit (16-color) sprite to the LCD, and displays each pixel as a 2x2 pixel block.

Technical Details

This routine draws an arbitrary-sized sprite to the LCD. In Doors CSE 8.0, it is implemented to

allow any 16-bit position and any 8-bit width and height for sprites. It will sanely handle

sprites that are partially off-screen by not drawing them at all. In future Doors CSE versions, it

will perform proper clipping to display the onscreen portions of partially off-screen sprites.

Inputs

de = top-left x

hl = top-left y

ix = pointer to sprite data with the following format:

.dw pointer_to_palette

.db widthpx, heightpx

.db bitpacked_padded_rows...

The routine accepts any 16-bit x-coordinate and any 16-bit y-coordinate. Widths must be at

most 255 pixels; heights must be at most 240 pixels. Note: After Doors CSE 8.0, this routine

will properly handle transparency at the edges of sprites with widths not divisible by 8, and

clipping of partially off-screen sprites.

Outputs

Sprite drawn to the LCD.

Destroyed

All

DrawSprite_8Bit

http://dcs.cemetech.net/index.php/DCSE:DrawSprite_8Bit

Description

Draws an 8-bit (256-color) sprite to the LCD.

Doors CSE 8 SDK
58

Chapter 5
ASM Routine Summary

Technical Details

This routine draws an arbitrary-sized sprite to the LCD. In Doors CSE 8.0, it is implemented to

allow any 16-bit position and any 8-bit width and height for sprites. It will sanely handle

sprites that are partially off-screen by not drawing them at all. In future Doors CSE versions, it

will perform proper clipping to display the onscreen portions of partially off-screen sprites.

Inputs

de = top-left x

hl = top-left y

ix = pointer to sprite data with the following format:

.dw pointer_to_palette

.db widthpx, heightpx

.db bitpacked_padded_rows...

If the pointer_to_palette is 0, then the routine will use the default palette where the high byte

of the 16-bit color written is equal to the low byte. This creates the set of colors seen below.

The routine accepts any 16-bit x-coordinate and any 16-bit y-coordinate. Widths must be at

most 255 pixels; heights must be at most 240 pixels. Note: After Doors CSE 8.0, this routine

will properly handle transparency at the edges of sprites with widths not divisible by 8, and

clipping of partially off-screen sprites.

Outputs

Sprite drawn to the LCD.

Destroyed

All

Doors CSE 8 SDK
59

Chapter 5
ASM Routine Summary

Math Routines

MultHE

http://dcs.cemetech.net/index.php/DCSE:MultHE

Description

Multiplies two 8-bit numbers and returns a 16-bit product.

Technical Details

Special thanks to z80 Bits for the inspiration for this routine.

Inputs

h = multiplier

e = multiplicand

Outputs

hl = product

Destroyed

b = 0

c is left intact

a, hl, and de are destroyed

MultDEBC

http://dcs.cemetech.net/index.php/DCSE:MultDEBC

Description

Multiplies two 16-bit numbers and returns a 32-bit product.

Technical Details

Special thanks to z80 Bits for the inspiration for this routine.

Inputs

de = multiplier

bc = multiplicand

Outputs

dehl = product

Destroyed

a = 0

bc, de, hl are destroyed

DivHLC

http://dcs.cemetech.net/index.php/DCSE:DivHLC

Doors CSE 8 SDK
60

Chapter 5
ASM Routine Summary

Description

Divides a 16-bit dividend by an 8-bit divisor; returns a 16-bit quotient and an 8-bit remainder.

Technical Details

Special thanks to z80 Bits for the inspiration for this routine.

Inputs

hl = dividend

c = divisor

Outputs

hl = quotient

a = remainder

Destroyed

All

RandInt

http://dcs.cemetech.net/index.php/DCSE:RandInt

Description

Generates a random integer between given bounds. Modifies (randData), aka

(asm_prgm_size), a 2-byte value in RAM. For most programs, this is safe.

Technical Details

Modified from an older Ion-compatible routine in Doors CS 7.x.

Inputs

b = Upper bound (exclusive)

Outputs

a = Resulting number, 0 <= a < b

Destroyed

af, bc

Doors CSE 8 SDK
61

Chapter 5
ASM Routine Summary

Utility Routines

RunProg

http://dcs.cemetech.net/index.php/DCSE:RunProg

Description

Runs a program via Doors CSE's RunProg subsystem. This call can handle any program that

Doors CSE itself can handle, including nostub BASIC and Hybrid BASIC, nostub and DCS ASM

programs, plus any other filetype that gets added to Doors CSE after this document was

written. Be very careful to take into account all the things that the running program could do

to this program's SafeRAM, modes, and variables (see Outputs below).

Technical Details

Inputs

hl = Pointer to high (first) byte of VAT entry of given program or file.

Outputs

Runs the program. Be aware this may trash a variety of variables and settings, create new

variables and settings, and switch many calculator modes, depending on the type of program

run. Also note that Hybrid BASIC programs and an ASM program may completely destroy any

SafeRAM in use, so be sure to either back up necessary variables

Destroyed

All (see Outputs)

Doors CSE 8 SDK
62

Chapter 6
Further Reading

CHAPTER 6

FURTHER READING

The most important place to get information about Doors CSE and Doors CS is the Doors CS

Wiki, http://dcs.cemetech.net/. The second most important place is the Cemetech website

and the Cemetech forums, where news about new versions, features, and programs is posted,

and where users and programmers alike can ask questions about the shell. The front page is

http://www.cemetech.net, and the Doors CS/Doors CSE subforum can be found at

http://www.cemetech.net/forum/viewforum.php?f=9. General information about

programming in z80 ASM and in TI-BASIC can be found at http://www.ticalc.org, and

programmers are encouraged to ask programming questions and request advice on tutorials,

project ideas, etc on the Cemetech forum.

As a last resort, you may hunt down my email address and drop me a line, but be advised that

I will answer questions much faster when they’re posted on the Cemetech forum, as I keep my

eye on that much more frequently than I do my email.

Thanks for browsing this document, good luck with your TI programming endeavors, and I

hope I get to hear from you on the Cemetech forum (http://www.cemetech.net/forum).

Cheers!

Doors CSE 8 SDK
63

Appendix A
License

APPENDIX A

LICENSE

Doors CSE is updated regularly to fix any reported bugs and compatibility issues, optimize

size, and add new features. You can find all Doors CSE news at the Cemetech homepage,

http://www.Cemetech.net. If you sign up as a Cemetech user, you can view the project page

with beta editions and more at http://dcs.cemetech.net. You can download this and all future

editions of Doors CSE from the Cemetech file archives or at the link above. If you have any

comments, questions, complaints, or compliments on Doors CS, feel free to send me an email

to dcse8@cemetech.net with the phrase “Doors CSE” in the subject line.

Doors CSE is intellectually copyrighted by Christopher Mitchell, programming alias Kerm

Martian. “Doors CS”, “Doors CSE”, “The Revolutionary New Shell for Graphing Calculators,”

“Cemetech,” and “Leading the Way to the Future” are copyright ©1998-2013 Christopher

Mitchell. Doors CSE may not be reverse engineered or modified without express written

consent of the author. Doors CSE may not be sold or installed for any monetary or other

reimbursement. Doors CSE may not be repackaged or redistributed without the permission of

the author.

The full Doors CSE license is reproduced below:

Doors CSE 8 End-User & Developer License

A.1| Preamble

This license applies to any and all possible pieces of human- and machine-readable computer
data, code, prose, graphics, and other materials in the assembly, basic, and other languages,
including associated documentation, ideas, and intellectual property created, designed,
and/or written by Christopher Mitchell, programming alias KERM MARTIAN. This document
governs the use of the compiled data, code, source, graphics, and other materials and
intellectual property of the official Doors CSE 8 alpha, beta, release candidate, and final
releases. Any and all use and reuse of the Doors CSE code for any purpose including but not
limited to an unofficial release of a compiled version by "Kerm Martian" must follow this
agreement. Any attempt to use or reuse the source code or compiled code for release under
"Kerm Martian" or another name must be explicitly approved by "Kerm Martian", except if
such use or reuse has been previously approved by "Kerm Martian". Previous approval does
not guarantee future approval, and “Kerm Martian” may choose to revoke any and all
permissions granted to other coders regarding use of the Doors CSE code, data, or source
including but not limited to circumstances of abuse or misuse.

By opening, downloading, or viewing this document, the executable binary program, the
Software Developers’ Kit, or the source code of DOORS CALCULATOR SHELL ENHANCED
("Doors CSE"), THE USER ("you") implicitly agree to the terms of this license agreement
(LICENSE or AGREEMENT). If you do not accept the terms of this agreement, you are to

Doors CSE 8 SDK
64

Appendix A
License

immediately delete this document and any related binary executable, documentation,
information, and source code you have viewed, downloaded, or cached.

All legal rights accorded copyrighted or protected works not expressly covered in this
document are reserved by "Kerm Martian".

A.3| Scope

This license covers the electronically-encoded, hardcopy, and any other instance of the source
and assembled code for the graphing calculator shell Doors CSE, its derivatives, and its
modules. This license does NOT cover any program written to work with Doors CSE by either
"Kerm Martian" or any other user, group, or organization. Certain portions of the code,
including routines in whole or in part, have been used with the permission of the original
third-party author(s). They may or may not be covered by original licenses. A user wishing to
use that code should contact those authors for permission to use their code, or "Kerm
Martian" may be able to contact the author on the user's behalf.

A.4| Usage

Under abolutely no circumstances whatsoever may the source code of Doors CSE be
recompiled in whole or in part and released by an individual, group, or third party other than
"Kerm Martian" without express, expicit written permission from "Kerm Martian". Sections of
code may be used in other published projects only with the written permission of "Kerm
Martian". The source code of Doors CSE may be freely examined and reverse-engineered only
for constructive purposes. It is explicitly illegal and contrary to this agreement to use any of
the information covered directly or indirectly by this agreement for malicious or harmful
purposes.

Optimizations, corrections, and bugfixes to this code may be submitted to the author, "Kerm
Martian". Such items may be accepted or denied as additions or changes to the official source
code maintained by "Kerm Martian" for official releases at "Kerm Martian"'s discretion. As a
general rule, good, constructive suggestions will be almost definitely accepted.

Doors CSE itself is not for use for academic dishonesty or malicious or illegal activities. Such
uses are a violation of this license agreement; such a violation nullifies the user’s license to
this program and requires its immediate removal as per section A.1 of this agreement.

A.5| Liability

Cemetech and “Kerm Martian” hereby disclaim any and all responsibility for damage and/or
injury to persons or property, both tangible and intangible, as a direct or indirect result of
using Doors CSE 8. Among the implicit areas of non-liability deemed necessary for explicit
statement here are “RAM Cleared” events, rendering of a mobile unit nonfunctional
(“bricking”), and unwanted additional, removal, or modification of data on a device due
directly or indirectly to Doors CSE 8, though all reasonable care has been taken to remove
instability from this final release.

A.6| Updates

No implied or express warranty is provided as to the frequency of updates to Doors CSE to
add additional features, update existing features, repair bugs, or modify any other aspect or
functionality of Doors CSE, its documentation, and its developer tools.

