A-calculator

A-calculator is a lambda expression evaluator for the T1-89/92+/V200:

d—calculator

leb Vo= o O O owD2
LR I .

5 take 20 % ¥ (“fibs B £ 1
: zu;b.llt,h t+r fibs ctail
Fa°57 2 3.5.8.13,21,34.55

H H
25 1445357578 E1n, 587,15
7. 55247415170

MAIN FRD AUTO FUMC

It draws a lot of inspiration from Haskell, but takes several liberties. Like Haskell, it is purely
functional and lazy. However, unlike Haskell, it is dynamically typed. This has a handful of
advantages, and several disadvantages. One advantage is, you can write the Y combinator unmodified,
and it will work. Namely:

let Y = \f (\x £ (x x)) (\x £ (x x))

A-calculator is far from perfect, and may crash your calculator, so use with caution (meaning archive
your files so you won't lose them).

Installation

* Ifyou have a TI-89 or TI-89 Titanium:

© Install lambda.89z and 1ambda. 89y
* Ifyou have a TI-92+:

o Install lambda.9xz and lambda.9xy
* Ifyou have a Voyage 200:

o Install lambda.v2z and lambda.v2y

prelude. 89t is optional, but recommended, as it provides a few functions to look at and use (as
well as the A—-calculator splash text).

samples is optional, and contains more sample code to look at and use.
Running lambda () will start the interpreter (which takes about 6 seconds to load), and will run the
commands in the TEXT file named prelude (if present). Alternatively, lLambda ("filename")

will run the commands in the TEXT file named f£ilename rather than prelude.

Note: Archive your files before running. Doing so will give the interpreter more memory to work
with, and will save your files if the calculator crashes.

http://en.wikipedia.org/wiki/Fixed_point_combinator#Y_combinator

Syntax

Lambda: \var expr

Note: The A character may also be used.
°© \x x +1

°© \x \y x +y

Function application: £ x

° £ (g9 x)

o (+) 1 2

Infix: exprl op expr2

Note: fixity is like in Haskell, except vars can be made infix, operators can be made prefix, and there isno ~div"
syntax.

o 2 + 2
©c 1 *x 2 4+ 3 * 4 == 14
o 15 div 5

Section: Just like in Haskell.
°© map (*2) (1..10)
o foldl (+) (1..10)

© mapM_ (putStrLn . ("We are " ++))
["One", "Strong", "Jaguars"]

If-then: if predicate then exprl else expr2

o if x<=y then x else y

o if x==0 then 0 else if y==0 then undefined else x/y
Integer:

o 123

O0xDEAD (hexadecimal)

© 0c31 (octal)

© 0b1010 (binary)

List: X (, ¥ (/))]

o

Note: the [1..10] syntax is not implemented. However, there are . . and . . . operators which cleverly (ab)use
infix and sections so you can say(1..10) and (1...).

° [

° [1,2,3]

° [[1,2]1,[3,4]1]
© [5, "hello"] (allowed due to dynamic typing)

String: Similar to Haskell string literals.
Note: “gaps” and escapes like \NUL ... \"A \"@ \"[arenotimplemented.

o putStr "Hello, world\n"
Char: Single-character literal
© putChar '\n’'

http://haskell.org/onlinereport/lexemes.html#sect2.6
http://www.haskell.org/onlinereport/exps.html#sections

Syntax

Additionally, at the top level only:

* Let binding:
o let fix = \f £ (fix f)
* Action binding:
© line <- getLine
* Fixity declaration:
o Left-associative:
= infixl 6 +
= infixl 7 div
© Right-associative:
= infixr 5
© Non-associative:
= infix 4 ==
o Prefix:
= prefix +
(makes it so you can say + 1 2 (but not 1 + 2) in future commands)
* Import:
© import filename
© import dir\filename

Features

A-calculator is a rather limited language at its core:

The only types are:
o Integer (64-bit)

= No floats, no arbitrary-precision integers.
© Char (8-bit)

o Boolean
© () (just like Haskell's ())
o List

© Function
© IO action
© return
= This is like Haskell's return. It's a rather ugly hack to provide monads in a dynamically-
typed setting.
© undefined (throws an error)
Lists don't get garbage collected during traversal.
For example, sum (1..1000) runs out of memory.

Note: This is not a flaw in the garbage collector, but in how the evaluator is written. When a function is called with
a list argument, the list head lingers in the stack, even though it's never used again.

However, for what it is, it has a lot of bells and whistles, including, but not limited to:

A lot of functions straight out of Haskell (press CATALOG to see the exhaustive list).
o However, read and show (conversion from strings to/from values) are not implemented,
and are dearly missed.
Line editing via the AMS text editor, and history!
Monads for 1O, list, and function:
© getLine >>= putStrLn
(get a line, and echo it)
© sequence $ replicate 4 [0,1]
(count to 16 in binary)
o (zip <*> tail) (1..5)
(list pairs of adjacent items)
File IO with readFile/writeFile/appendFile and their binary variants.
o However, it's not really that useful due to the interpreter's slowness, poor memory
management, and lack of read and show.
A few AMS-specific actions, such as ngetchx and setFont.

http://tigcc.ticalc.org/doc/graph.html#FontSetSys
http://tigcc.ticalc.org/doc/kbd.html#ngetchx
http://haskell.org/tutorial/io.html#sect7.1

	Installation
	Syntax
	Syntax

	Features

