DIFFERENTIAL EQUATIONS with TI-89
ABDUL HASSEN and JAY SCHIFFMAN

We will assume that the reader is familiar with the calculator’s keyboard and the basic operations. In
particular we have assumed that the reader knows the functions of the SECOND, APLHA, and GREEN
DIAMOND keys. Thus we will simply say “display the Y=editor” assuming that the reader will first press the
DIAMOND key and then F1. We have use bold face upper case letters to refer to the calculator’s commands
or keys. When we say “You can access the command and from Math 8 8”, we mean first press MATH. (which
is 2" then 5) and then press 8 twice. Note that most menus have several submenus, which in turn may have
many options. To display and select an option we may need to use the curser keys.

Most built-in functions can be found by pressing CATALOG followed by the first letter of the desired
command. One can then select the command by scrolling down, if necessary, using the cursor key. To clear the
home screen, use F1 8. To go back to the home screen, use HOME or ESC or QUIT. To obtain an
approximate value (in decimals) use the GREEN DIAMOND followed by ENTER. To draw a graph use
GREEN DIAMOND followed by F3.

A. Direction Fields and Graphs of Differential Equations

Example 1:  Draw the direction filed of the differential equation y'= x> —y

Solution:
1. Press the MODE key and from the GRAPH mode select 6: DIFF EQUATIONS.
2. Display the Y= editor and enter your differential equation. Use ¢ for independent variable and y/ for

y. For the prime notation for the derivative use 2\° =. Draw the graph.
The figures below show the above steps.
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Example 2:  Draw the graph of the solution of y'=x”—y that passes through (1,-2)

Solution: Enter your differential equation as in Example 1.
1. Use the cursor key to move up to the initial value of # and press F3. Then type 1 and ENTER.
2. Type -2 for the y-value in the line y, =. Draw the graph.

The first figure below shows the inputs while the second shows the graph.
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Remarks:
1. To draw the graph of the solution without the direction field, from the Y= editor press F1 9 to
display the GRAPH FORMAT. From the Fields option (the last row) use the right cursor key to
choose 3:FLDOFF and press ENTER. Now draw the graph.



2. You can obtain solutions passing through other points by simply changing the initial conditions
while you are in the direction field/graph screen. To do this press F8 (which is 2™° F3.) and type the
initial condition for  and ENTER and then type the initial value for y and ENTER.

3. There are several styles for the graph of the solution through a given point. From the Y= editor
screen press F6 (which is 2" F1) and choose any of the styles and see what happens.

The figures below show GRAPH FORMAT and the graph of the equation y'= x” — y with different initial

values using F8 (from the graph display).
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Example 3:  Draw the direction filed for the system of differential equations

dx
—=5x+3y-2¢
dr Y

dy 2
D _4x-3y-t
dr Y

Solution: In the Y= editor use y/ for x and y2 for y. From the Fields option of the graph format, choose
2:DIRFLD. (See Remark 1 above.) The first two figures show the inputs and the direction field, respectively.

The last two figures show a graph of an initial value problem for systems of equation. (Write the IVP.)
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Example 4:  Draw the direction filed for y"+3y'-y=x.

Solution. TI-89 draws direction fields only for first order and systems of first order differential equations.
Thus we need to convert this second order equation in to systems of first order equations. As before we use ¢ for
the independent variable and y, for y. We let y, = y,' Then the given equation is equivalent to the system

dy, _

i =)

dy

7;:14-);1 =3y,

Proceed as in Example 3. The main point of this example is that we can use this technique for higher order
differential equations. (See Section D below)

B. Solving First and Second Order Differential Equations

The command for solving first and second differential equations is deSolve( which can be accessed by F3 C.
The format for this command is
deSolve(the differential eqn, independent variable, dependent variable)

Example 5:  Solve a) y'=y+x° b) y"+5y'-6y=0
Solution: In the input line enter deSolve( y'= y+x°, X,y ) ENTER . The figures tell the story!
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Note that TI — 89 is giving you the general solution for a) as y =@1-e* —x* —2x— 2 . Thus @1 stands for an
arbitrary parameter (that we usually write as corc,.)

Example 6:  Solve the initial value problem (IVP) y"+2y'-3y=¢*, y(0)=1 and y'(0)=-
Solution: In the input line enter deSolve( y"+2y'-3y=¢"and y(0)=1and y'(0)=-1,x,y) ENTER
You can access and from Math ( which is 2" 5) 8 8. You could also type it. Use ALPHA (-) for space.

Example 7:  Draw the graph of the solution of the IVP y"+2y'+5y=¢", y(0)=1 and y'(0)=-
Solution: First solve the IVP as in Example 6.Then from the input line use F4 1 to Define y1(x) as the
solution. You can get the solution by using the upward cursor key and pressing ENTER. Make sure to
delete y. This will automatically enter the solution as y/ on the Y=editor. Here is the solution and the graph.
(We have used [-5,8] by [-10,30] for the graph window.) Make sure that the MODE is on Functions not on

Diff Equations.
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C. Euler and Runge-Kutta Methods

The TI 89 can generate numerical solutions using the Euler and Runge-Kutta methods. The command for this is
BldData name. Here BldData is the command for building the table of values and name is the name of the
data. We show the details in the following example.

Example 8:  Consider the IVP: y'=x—y, y(0)=1

a) Use Euler’s method to construct a numerical solution for the IVP.
b) Use Runge-Kutta method to construct a numerical solution for the IVP
c) Solve the IVP
d) Construct a table to compare the two numerical methods and the exact solution.
Solutions:  a) Here are the steps to build the data for the numerical solution using Euler’s method.
1. Enter the differential equation in the Y= editor and delete any other equations.

2. From the graph format, select EULER for Solutions Method and FLDOFF for Fields.
3. Press HOME then CATALOG and b. Select BldData and ENTER. Type eu for the name and
ENTER. (You could also type blddata eu on the input line after your press HOME)
4. Open eu using APPS 6 2 and then select eu for Variable.
b) For the Runge-Kutta method from the graph format, select RK for Solutions Method. Press HOME
and type blddata rk and ENTER.



c)
d)

Solve the IVP using deSolve( and Define y(x) as the solution.(See Example 7.)
To compare the two methods and the exact solution, follow these steps.

1.

Nk W

Use APPS 6 3 to create a new data, call it comp.

Press F4 and type eu[1] and ENTER.(eu[1] refers to the first column of the data called eu.)
Move to the second column and press F4. Type eu[2] and ENTER.

Move to the third column and press F4. Type rk[2] and ENTER.

Move to the fourth column and press F4. Type y(c1) and ENTER.

Here are the figures showing the results of the above steps. If your table is different from ours, change
the value of #step in the WINDOWS to 0.1.
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D. Solving Third and Higher Order Differential Equations

Remark: TI 89 does not solve 3" and higher order differential equations. To obtain the graph of a solution
of third and higher order equation, we convert the equation into systems of first order equations and draw
the graphs.(See Example 4 above.) However, we can utilize the TI 89 capability to solve polynomial
equations with complex roots to solve linear differential equations of higher order with constant
coefficients. Here are some examples.

Example 9: Solve y"+3y"-y'-3y=0
Solution: The auxiliary equation is #* +3¢* —¢—3 =0 and using the ¢Solve( (which can be accessed by F2
A 1) command for solving equations with complex roots, we obtain ¢ =1or t =—1lor t =-3. Thus the

general solution is given by y =c,e* +c,e ™ +ce .

Example 10: Solve y"+3y"+28y'+26y=0.

Solution: The auxiliary equation is #* + 3¢ +28¢+26 =0 and using c¢Solve(#’ + 3¢ +28t+26 =0, 1) we get
t=—1+45ior t =—1-5ior t =—1. Thus the general solutionis y =ce ™ +c,e " cos(5x) +c,e “sin(5x)

Example 11: Solve the IVP y"—y"-4y'+4y =0, y(0)=—4, y'(0)=-1,and »"(0)=-19

Solution: The auxiliary equation here is #* —#> — 4t +4 = 0and cSolve(#’ —t* —4t+4 =0, 1) yields the
solutions #=2or t=1or t =—2. Now use F4 1 to define the general solutionas y=a-e** +b-e* +c-e".
To solve for a, b, c using the initial condition, we could ENTER

Solve((y|x=0)=-4 and (d(y,x)|x=0)=-1and (d(y,x,2)|x=0)=-19 ,a)

For the derivative, use F3 1 or 2" 8. Here are the steps.
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Thus the solution of the IVP is y = —3¢** +¢°

E. Solving Systems of Differential Equations

In Section A we have discussed how to obtain the graph of a solution of a system of differential equations. Here
we will solve systems with constant coefficients using the theory of eigenvalues and eigenvectors.
Example 12: Solve the system of equations given by X '= AX where , _ {2 —3}

1 -2
Solution: It is now recommended that you clear all the single variables you might have used earlier. F6 1
ENTER will accomplish this. Here are the relevant steps.

1. The first task will be to enter the matrix A. Use APPS 6 3 and Type choose 2:matrix. Use the
down cursor key to go to the variable box and type a for the name of the matrix. For both row
and col dimensions type 2.(Again use the down cursor key after you typed the inputs.)Now
ENTER and type the entries of the matrix.(The first row must be filled in first.) Press HOME
and CLEAR

2. Find the eigenvalues of the matrix by using Math 4 9 a) ENTER or by typing eigvl(a)

3. Find the eigenvectors of the matrix by using Math 4 A a) ENTER or by typing eigve(a)

The figures below are the result of the above steps The last ﬁgure shows the eigenvalues and vectors.
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Thus the general solution of the equation is given by

¥ 707107 " -.968683
= C e C e
"1.707107 1 -.316228

Remark:

1. The first number given by eigVI(a) is the first eigenvalue which in this case is —1 and second eigenvalue
is 1. The first column of the eigVe(a) is an eigenvector corresponding to the first eigenvalue of a. Note
that TI 89 is normalizing the vectors, that is the eigenvectors are unit vectors.

2. For our purposes and easier notations, it is convenient to rewrite the eigenvectors with integer entries.
This is usually possible. One possible method is to replace the smallest number in the columns by 1 and
divide the other entries in that column by the smallest value you just replaced. Use the command
eigVc(a)[j,k] to refer to the j-k entry of the matrix eigVe(a).It is clear that the first columns are equal

thus for the fist eigenvector we may take 1} . The second one may not be clear so we replace -.316228
1

by 1. Note then that -.96683/-.316228 is 3.062. Thus it is highly recommended that you compute
eigVe(a)[2,1]/ eigVe(a)[2,2]. We find that this is 3. Thus we may take F} as the second eigenvector.
1

Thus the general solution could also be given by , _ . {1} ol e {3} ot
"1 1



3. Note that we can express the above solution as | _ {e’ 3e‘:| {c. } . The matrix = _ {e’ 3e‘} is

-t t

e e c,

sometimes referred to as the fundamental matrix of the equation X '= AX .

Example 13: Solve X'=AX, X(O)z{—l},where p :[2 —3}
2

1 -2
Solution: As in Example 12 we solve X '= AX and express the answer in the form given in Remark 3
above. All we have to do now is solve the system of equations {e_[ 36[} {c' } = {_1}
e’ e L 2

=t t

e e

To this end we enter the matrix {e’ 3 e’} into the calculator as b. and { 1} as d. The we compute the
2

command rref(augment((b[t=0),d)). The last column of this row reduced echelon form matrix gives the
solution for ¢,andc,. rref and augment can be accessed from Math(2" 5) 4 4 and Math 4 7, respectively.
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Example 14: Solve X'=AX+F ,where p _| € andA _[2 -3
t 1 -2
Solution: Let b be as in Example and let , _ {C ! } . Then the general solution to the system is given by
¢,

X = b~c+b-J'(b"1 - f)dt. Enter F as f and execute the command b-J.(b"1 - f)dt. ForI ,use F32 or 2™ 7.

Here are the figures for these steps.
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Therefore the general solution is given by

Example 15: Solve X'=AX+F, y ) _ {—1} , where . _ {e} and , _ [2 3]
2 t 1 -2

Solution: We will use the notations of Examples 13 and 14. The solution is then given by the formula:

X =b-(b"(0))-d +b -j(bl(s) - f(s))ds

We now need to Define b~ (-1) and f as functions of s rather than as functions of t. We will use e and g, for b (-
1) and f, respectively. Here is a partial picture.
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The solution is X = { + +3t,—— e +
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