
λ-calculator
λ-calculator is a lambda expression evaluator for the TI-89/92+/V200:

It draws a lot of inspiration from Haskell, but takes several liberties. Like Haskell, it is purely
functional and lazy. However, unlike Haskell, it is dynamically typed. This has a handful of
advantages, and several disadvantages. One advantage is, you can write the Y combinator unmodified,
and it will work. Namely:

let Y = \f (\x f (x x)) (\x f (x x))

λ-calculator is far from perfect, and may crash your calculator, so use with caution (meaning archive
your files so you won't lose them).

Installation

• If you have a TI-89 or TI-89 Titanium:
◦ Install lambda.89z and lambda.89y

• If you have a TI-92+ :
◦ Install lambda.9xz and lambda.9xy

• If you have a Voyage 200:
◦ Install lambda.v2z and lambda.v2y

prelude.89t is optional, but recommended, as it provides a few functions to look at and use (as
well as the ­calculatorλ splash text).

samples is optional, and contains more sample code to look at and use.

Running lambda() will start the interpreter (which takes about 6 seconds to load), and will run the
commands in the TEXT file named prelude (if present). Alternatively, lambda("filename")
will run the commands in the TEXT file named filename rather than prelude.

Note: Archive your files before running. Doing so will give the interpreter more memory to work
with, and will save your files if the calculator crashes.

http://en.wikipedia.org/wiki/Fixed_point_combinator#Y_combinator

Syntax

• Lambda: \var expr
Note: The λ character may also be used.

◦ \x x + 1
◦ \x \y x + y

• Function application: f x
◦ f (g x)
◦ (+) 1 2

• Infix: expr1 op expr2
Note: fixity is like in Haskell, except vars can be made infix, operators can be made prefix, and there is no `div`
syntax.

◦ 2 + 2
◦ 1 * 2 + 3 * 4 == 14
◦ 15 div 5

• Section: Just like in Haskell.
◦ map (*2) (1..10)
◦ foldl (+) (1..10)
◦ mapM_ (putStrLn . ("We are " ++))

 ["One", "Strong", "Jaguars"]
• If-then: if predicate then expr1 else expr2

◦ if x<=y then x else y
◦ if x==0 then 0 else if y==0 then undefined else x/y

• Integer:
◦ 123
◦ 0xDEAD (hexadecimal)
◦ 0c31 (octal)
◦ 0b1010 (binary)

• List: [x (, y (, …))]
Note: the [1..10] syntax is not implemented. However, there are .. and ... operators which cleverly (ab)use
infix and sections so you can say(1..10) and (1...).

◦ []
◦ [1,2,3]
◦ [[1,2],[3,4]]
◦ [5, "hello"] (allowed due to dynamic typing)

• String: Similar to Haskell string literals.
Note: “gaps” and escapes like \NUL ... \^A \^@ \^[are not implemented.

◦ putStr "Hello, world\n"
• Char: Single-character literal

◦ putChar '\n'

http://haskell.org/onlinereport/lexemes.html#sect2.6
http://www.haskell.org/onlinereport/exps.html#sections

Syntax

Additionally, at the top level only:

• Let binding:
◦ let fix = \f f (fix f)

• Action binding:
◦ line <­ getLine

• Fixity declaration:
◦ Left-associative:

▪ infixl 6 +
▪ infixl 7 div

◦ Right­associative:
▪ infixr 5 :

◦ Non­associative:
▪ infix 4 ==

◦ Prefix:
▪ prefix +

(makes it so you can say + 1 2 (but not 1 + 2) in future commands)

• Import:
◦ import filename
◦ import dir\filename

Features

λ-calculator is a rather limited language at its core:

• The only types are:
◦ Integer (64-bit)

▪ No floats, no arbitrary-precision integers.
◦ Char (8-bit)
◦ Boolean
◦ () (just like Haskell's ())
◦ List
◦ Function
◦ IO action
◦ return

▪ This is like Haskell's return. It's a rather ugly hack to provide monads in a dynamically-
typed setting.

◦ undefined (throws an error)
• Lists don't get garbage collected during traversal.

For example, sum (1..1000) runs out of memory.
Note: This is not a flaw in the garbage collector, but in how the evaluator is written. When a function is called with
a list argument, the list head lingers in the stack, even though it's never used again.

However, for what it is, it has a lot of bells and whistles, including, but not limited to:

• A lot of functions straight out of Haskell (press CATALOG to see the exhaustive list).
◦ However, read and show (conversion from strings to/from values) are not implemented,

and are dearly missed.
• Line editing via the AMS text editor, and history!
• Monads for IO, list, and function:

◦ getLine >>= putStrLn
(get a line, and echo it)

◦ sequence $ replicate 4 [0,1]
(count to 16 in binary)

◦ (zip <*> tail) (1..5)
(list pairs of adjacent items)

• File IO with readFile/writeFile/appendFile and their binary variants.
◦ However, it's not really that useful due to the interpreter's slowness, poor memory

management, and lack of read and show.
• A few AMS-specific actions, such as ngetchx and setFont.

http://tigcc.ticalc.org/doc/graph.html#FontSetSys
http://tigcc.ticalc.org/doc/kbd.html#ngetchx
http://haskell.org/tutorial/io.html#sect7.1

	Installation
	Syntax
	Syntax

	Features

