

TI-CF

A software Application
On TI-89, TI-92 Plus and Voyage 200

User Manual

Feb. 2005
© Dan “Gveto” Hauer

Rev. 1.0
TI-CF 1.0

http://ti-cf.gveto.com

About TI-CF

TI-CF is an application designed to solve single variable cash flow
diagram (CFD) problems in a command line, function based manner. TI-CF was
written in C and assembled for the TI-89, TI-92 Plus, and Voyage 200 calculators
with TIGCC. TI-CF requires at least AMS 1.01 to run. TI-CF does not require a
kernel to run.

http://ti-cf.gveto.com/

Current Capabilities

 Currently, TI-CF can populate a cash flow diagram with given flow
amounts and the coefficients of the variable to be solved at any period. The
program has routines to fill the cash flow arrays with standard series such as
uniform series (A), geometric series (g), and other common series. The cash
flow diagram interest can be entered at any time as a constant interest per
period, compounded n times per period, or compounding continuously. TI-CF
operates on one cash flow diagram at a time.

Operation

 TI-CF is a command line program based on functions and arguments.
The generic form of function entry is:

CF>func(arg1, arg2, ... , argn)

Where func is the name of the function to execute, and arg1 – argn are the
passed arguments to that function. Note that functions that do not receive
arguments still must be followed by an empty parenthesis pair.

Example:
To create a new cash flow (CF) with 52 periods, use

the following command:
new(52)

 To print the values of the current CF, use the
following command:

print()

Note that CF periods begin with period 0, not 1. So, the above new
command would create a CF of 52 periods from period 0 to period 51. TI-CF
assumes that all given cash flows are on the opposite side of the cash flow array
to the variable coefficients to be solved. For a cash flow involving both receipt
and disbursement given cash flows, the receipts should be entered as positive
values in the given CF array and the disbursements as negative values.

Functions

 The following is a list of functions used by TI-CF and the associated usage
and arguments.

Key:

[int] is short for integer which simply means a

whole number.

[float] is a number that can have a decimal value,

though it doesn’t have to.

[func] is short for function, and refers to the name

of a TI-CF function.

a([int] start, [int] stop, [float] a)

 Adds a uniform series in the given CF array starting at period start
and ending at period stop of value a. Note that by as defined by a uniform
series, the period stop is included in the series, while start is not.

xa([int] start, [int] stop, [float] a)

 Adds a uniform series in the variable coefficient array starting at
period start and ending at period stop of value a. Note that by as defined
by a uniform series, the period stop is included in the series, while start is
not.

exit()

 Exits the TI-CF session.

g([int] start, [int] stop, [float] G)

 Adds an arithmetic gradient to the given CF array starting at period
start and ending at period stop. G is the uniform period-by-period increase
or decrease.

xg([int] start, [int] stop, [float] G)

 Adds an arithmetic gradient to the CF variable coefficient array
starting at period start and ending at period stop. G is the uniform period-
by-period increase or decrease.

geo([int] start, [int] stop, [float] g)

 Adds a geometric gradient to the given CF array starting at period
start and ending at period stop. g is the uniform rate of cash flow increase
or decrease.

xgeo([int] start, [int] stop, [float] g)

 Adds a geometric gradient to the CF variable coefficient array
starting at period start and ending at period stop. g is the uniform rate of
cash flow increase or decrease.

info()

 Prints the current CF size and interest rate.

new([int] n)

 Creates a new CF with n periods. The new function automatically
deletes the old CF array (if it exists) and initializes a new one with default
values of 0 for both the given cash flow and the variable coefficient array
without prompting the user. Since n is the size of the CF, a CF allocated
with n = 5 will have periods 0 – 4. This is important since any command
that refers to period 5 in this example will cause an error since there is no
period 5.

s([int] n, [float] value)

 Adds a single value of value into the given CF array at period n.

xs([int] n, [float] value)

 Adds a single value of value into the variable coefficient array at
period n.

print()

 Prints the current cash flow values separated by commas starting
at period 0.

solve()

 Solves the current CF problem and outputs the unknown variable
X. solve() does not affect the current CF arrays.

int([float] i)
int([float] r, [float] m)
int([float] r, c)

 As indicated, there exists 3 usages for the int function. First, int
called with a single argument simply sets the CF interest rate to i%. Note
that the interest rate is entered is in percent, not its decimal equivalent.
For instance, for an interest rate of 10%, one would enter 10 for i rather
than .1 .

 int also has support for compounding interest. When called with
two arguments, the first argument is r, the nominal interest rate per period.
The second argument is m, the number of compounding subperiods per
period. The CF interest is then calculated and set as the effective interest
rate per interest period.

 Finally, to set the interest to a continuously compounding effective
rate, pass a first argument of r, the nominal interest rate per period, and
the letter ‘c’ to indicate compounding continuously. The CF interest rate
will be set to the effective interest rate per period.

Example:
To set the interest rate to 8% per period, use the

command:
int(8)

 When dealing with periods that correspond to years,
use the following command to set the interest rate to 8%
compounded quarterly:

int(8,4)

To set an interest rate of 8% nominal compounded
continuously, use the command:

int(8,c)

The latter two commands return the following
messages, so it is easy to see how TI-CF can be used to
calculate effective interest rates:

Examples

1. Consider a situation in which you borrow $5000. You will repay the loan in five equal
end-of-the-year payments. The first payment is due one year after you receive the loan. Interest
on the loan is 8%. What is the size of each of the five payments?

 Put into a cash flow diagram, the problem is easy to solve with TI-CF:

First, we set the size and interest rate of the CF:

new(6)
int(8)

Let’s use the info function to verify our entries:

info()

So far so good. The next step is to populate the CF with the given information. First, the single
receipt:

s(0,5000)

then the variable uniform series:

xa(0,5,1)

Notice that the coefficients were all set to 1. This will be the case when all only one unknown
period exists, or as here when all the unknown periods are of the same unknown value.

To be on the safe side, let’s check our CF before solving:
print()

Everything’s in order. Finally, use the solve function to solve for the unknown:

solve()

TI-CF gives us an answer of $1252.28.

2.

The given CF can be broken down into the sum of an arithmetic gradient series and a uniform
series. Note that functions that operate on the two arrays in TI-CF add the new values in to the
existing values, rather than replacing them. The problem is entered as follows:

new(6)
int(5)
a(0,5,120)
g(0,5,30)
xs(0,1)
solve()

The answer is given to be $766.64.

3. On January 1, a woman deposits $5000 in a credit union that pays 8% nominal annual
interest, compounded quarterly. She wishes to withdraw all the money in five equal yearly sums,
beginning December 31 of the first year. How much should she withdraw each year?

 While this problem could be solved using 20 periods with i = 2% per period, and
withdraws every 4 periods, let’s make use of TI-CF’s ability to use compounded interest:

new(6)
int(8,4)

TI-CF has computed the effective yearly interest rate to be 8.243%. Note that internally, TI-CF
has computed this value to many more decimal places than the displayed 3 for the most accurate
results. The cash flow diagram is then:

Populating the arrays and solving:

s(0,5000)
xa(0,5,1)
solve()

Note that the unknown values are on top of the CFD, but this is of no consequence as long as
they are on the opposite side to the given cash flows.

4.

new(5)
int(10)
g(-1,4,100)
xa(0,4,4)
xg(0,4,-1)
solve()

Note: For G, A, and g series, a start value of -1 is acceptable, but -1 is the lowest valid value for

start. When entering negative number, be sure to use the sign key and not the subtraction
key.

Future Ambitions

 Possible future additions may include more detailed in-calculator help, and
the ability to solve CFD problems for the interest rate or the number of periods.
A more esoteric addition may be the implementation of a graphical view of the
CFD, and possibly graphical editing.

Disclaimer

 TI-CF is provided in good faith, but is supplied "as is" without any warranty
of any kind. Neither the programmer, nor any distributor or ISP shall be
responsible for any claims attributable to errors, omissions or other inaccuracies
in the programs or documentation. The entire risk as to the results and
performance of the program is assumed by the user. Neither the author or any
distributor or ISP make any representations or warranties, either express or
implied, with respect to the software, including but not limited to, the quality,
performance, or fitness for a particular purpose. In no event shall the author or
any supplier be liable for direct, indirect, special, incidental, or consequential
damages arising out of the use of or inability to use the software or for any loss
or damage of any nature caused to any person or property or data as a result of
the use of the program, even if the author or supplier have been specifically
advised of the possibility of such damages.

 I have used TI-CF to successfully solve many CFD problems, but I cannot
guarantee it to be bug-free. It is always a good idea to archive any files you may
want to keep before executing any ASM program. If you find a bug or have a
general question, request, or comment, please email me at admin@gveto.com or
visit http://ti-cf.gveto.com for information on updated versions.

Dan “Gveto” Hauer

mailto:admin@gveto.com
http://ti-cf.gveto.com/

	About TI-CF
	Current Capabilities
	Operation
	Functions
	Examples
	Future Ambitions
	Disclaimer

