HASHLIB

Industry-Standard
Cryptography

on the
TI-844+ CE

Version 9.2

Quick Reference

by Anthony Cagliano

CONTENTS CONTENTS

Contents
1 Enumerations, Definitions, and Macros 2

2 Implementations 4
2.1 Cryptographically-Secure Random Number Generator (CSRNG) 4
2.2 Cryptographic Hashing e 5
2.3 Hash-Based Message Authentication Code (HMAC) 6
2.4 Mask and Key Generation L e 7
2.5 Advanced Encryption Standard (AES) 8

2.6 RSA Public Key Encryption 10

2.7 Miscellaneous Functions 11

2.8 Addendum: Authenticated Encryption with HASHLIB 11
3 Contributors 12
4 Disclaimer 12
Installation

HASHLIB is a library, not a program or an application. It is meant to be used in accordance with the same
usage guidelines as the other libraries in the CE C toolchain. If you have not already, familiarize yourself
with the installation and usage instructions for the toolchain starting with this page.

If you are an end user who needs the library present, either for testing or for using a program that requires
HASHLIB, install it by sending the library file, the TT application variable hashlib.8xv to your device. If
you do not do this, programs that use it will fail to start, instead returning to the homescreen and yelling
at you about a missing library.

If you are a developer looking to use the library within your own project, you must follow the steps below.

e Move the library’s C header and .lib files to the correct directories. Copy the hashlib.1lib file to
the 1ib/1libload directory within the extracted toolchain folder. Copy the hashlib.h folder to the
include directory.

e Include the C header for HASHLIB in any C source file where you use anything from the library. Do
this like so: #include <hashlib.h>.

e Use defines or functions from the library freely within any C source file where the library’s header is
included.

https://github.com/CE-Programming/toolchain
https://ce-programming.github.io/toolchain/static/getting-started.html

1 ENUMERATIONS, DEFINITIONS, AND MACROS

1 Enumerations, Definitions, and Macros

Hash Algorithms

SHA256 Selects the SHA-256 hash or hmac algorithm

AES Cipher Modes

AES_MODE_CBC Selects cyclic-block chaining (CBC) cipher mode

AES_MODE_CTR Selects counter (CTR) cipher mode

AES Padding Schemes

SCHM_DEFAULT Enables default padding mode (PKCS#7)
SCHM_PKCS7 Enables the PKCS#7 padding scheme
SCHM _ISO2 Enables the ISO-9797 M2 padding scheme

AES Response Codes

AES_OK AES operation completed w/o errors
AES_INVALID_ARG One or more inputs invalid
AES_INVALID_MSG Message cannot be encrypted
AES_INVALID_CIPHERMODE Cipher mode not supported
AES_INVALID_PADDINGMODE Padding mode not supported
AES_INVALID_CIPHERTEXT Ciphertext cannot be decrypted

1 ENUMERATIONS, DEFINITIONS, AND MACROS

RSA Response Codes

RSA_OK RSA operation completed w/o errors
RSA_INVALID_ARG One or more inputs invalid
RSA_INVALID_MSG Message value exceeds modulus value

Modulus not odd

Length not in range 128-256 bytes

OAEP requirements not met, ex:

Message not less than twice the hash digest length plus two.

RSA_INVALID_-MODULUS

RSA_ENCODING_ERROR

Constant Definitions

fastRam_Safe Region of fast RAM generally safe to use for short-term computations
fastRam_Unsafe Region of fast RAM used by this library for PRNG and hashing speed
SHA256_DIGEST_LEN Binary length of SHA-256 hash digest (32 bytes)

AES_BLOCKSIZE Block length of the AES cipher (16 bytes)

AES_IVSIZE Length of the AES initialization vector (same as block size)

aes_outsize(len) Returns the smallest multiple of the block size that can hold the ci-
phertext with any required padding

aes_extoutsize(len) Returns the output of aes_outsize(len) with an additional 16 bytes
added for the IV

2 IMPLEMENTATIONS

2 Implementations

2.1 Cryptographically-Secure Random Number Generator (CSRNG)

Many of the pseudo random number generators (PRNGs) you find in computers, even the one within the
C toolchain for the CE, are insecure for cryptographic purposes. They produce statistical randomness but
they are deterministic, meaning that for a single input there is a single output, regardless of the complexity
of the algorithm that generates that output. While these types of generators suffice for the illusion of
randomness, they are insecure for cryptographic purposes. A deterministic RNG can be defeated by an
adversary who gains knowledge of the state of the generator, allowing them to compute every output that
follows. Furthermore many of these RNGs are seeded (def: set to an initial value) using some known (or
easily computable/reverse-engineerable) value like system time or CPU tick counter.

A secure RNG requires some form of entropy gathering. FEntropy is defined as unpredictability. The more
entropy that exists in a source, the more unpredictable its output is likely to be. Modern computer sys-
tems derive cryptographically-secure randomness by pooling entropy from various sources: network and
bus noise, CPU clock jitter, electrical variances, and more. The calculator is a much simpler device and
lacks the vast majority of these sources of entropy. However, even on such a simple device you can pro-
duce cryptographically-secure randomness in theory by pooling enough entropy from the one source that
exists—bus noise. Bus noise is the term for electrical variance across a region of unmapped memory. A more
technical explanation of the sourcing of randomness as well as a proof of cryptographic security can be found
in HASHLIB Cryptanalysis, Section 1.

It is also worth noting that on CEmu the bus noise is simulated using a deterministic RNG. This means that
while this SRNG will still be statistically random on that platform, it will not be unpredictable and thus
the security proofs do not hold for that platform.

bool csrand_init(void)

Initializes the CSRNG. Returns True if the source selection succeeded and False if it failed. Be sure to
intercept and handle a return value of False from this function.

uint32_t csrand_get(void)

Returns a securely pseudo random 32-bit (4 byte) unsigned integer.

bool csrand fill(void* buffer, size_t size)

buffer Pointer to an arbitrary buffer to fill with random bytes.
size Number of bytes to write.

2.2 Cryptographic Hashing 2 IMPLEMENTATIONS

2.2 Cryptographic Hashing

A cryptographic hash is a fixed-size representation of an arbitrary-length stream of data. The main function
of a cryptographic hash is to verify whether some block of stored or transmitted data has changed from its
original creation. This works because the deviation of even a single bit in the input changes the hash quite
drastically.

Hashes have a number of practical uses, not just in cryptography but throughout the field of information
security. A few of these uses are:

e File integrity monitoring: A database of hashes for known good files is saved and consistently
checked against the current state of a system. Changes to the current hashes can reveal potentially
malicious tampering with files.

e Data transfer integrity: Including a hash with data sent over the Internet can have a number
of benefits. Firstly, if packets are lost between the source and destination, a mismatch between the
included hash and one computed by the destination would reveal the transfer as corrupted and then a
well-designed transmission control protocol would initiate a re-transmission. A similar benefit is in the
detection of malicious tampering of the message in transit. It is not possible to differentiate between
packet loss and malicious tampering, and so any message that fails a transfer integrity check should
never be accepted.

e Password encryption: Hashes are used to encrypt passwords as well; However the class of hashes
to which those belong are vastly different. Cryptographic hashes are fast and efficient algorithms for
dealing with streams of data quickly but are (for that very reason) insecure for encrypting passwords.
While cryptographic hashes are involved in some moderately-secure key derivation functions, such as
PBKDF2, long-term storage of passwords requires the use of a slow hash like bcrypt or argon. These
hash algorithms have certain characteristics that make them safer for encrypting passwords. Sadly,
HASHLIB does not (yet) implement any password hashing algorithms.

void hash_init(hash_ctx* ctx, uint8_t hash_alg)

Initializes the hash-state context for use.
ctx A pointer to an instance of hash_ctz.
hash_alg The hashing algorithm to use. See hash_algorithms (Enumerations).

void hash _update(hash_ctx* ctx, const void* data, size_t len)

Updates the hash-state with new data. Be sure to initialize it first!
ctx A pointer to an instance of hash_ctx.

data A pointer to arbitrary data to hash.

len The size, in bytes, of the data to hash.

void hash final(hash_ctx* ctx, void* digest)

Performs final transformations on the context and returns a digest from the current hash-state.
Does not destroy the context. It can still be used with the same data stream if needed.

ctx A pointer to an instance of hash_ctx.

digest A pointer to a buffer to write the digest to.

2.3 Hash-Based Message Authentication Code (HMAC) 2 IMPLEMENTATIONS

2.3 Hash-Based Message Authentication Code (HMAC)

An HMAC generates a more secure hash by using a key known only to authorized parties as part of the
hash initialization. Thus, while normal hashes can be generated and verified by anyone, only the parties
with the key can generate and validate using a HMAC hash. An HMAC can fill the same roles as a normal
cryptographic hash, but provides endpoint validation as well.

void hmac_init(hmac_ctx* ctx, const void* key, size_t keylen, uint8_t hash_alg)

Initializes the HMAC hash-state context for use.

ctx A pointer to an instance of hmac_ctz.

key A pointer to the key to use in the HMAC initilaization.

keylen The length of the key, in bytes.

hash_alg The hashing algorithm to use. See hash_algorithms (Enumerations).

NIST recommends a minimum key length of 128 bits, or 16 bytes.

void hmac_update(hmac_ctx* ctx, const void* data, size_t len)

Updates the HMAC hash-state with new data. Be sure to initialize it first!
ctx A pointer to an instance of hmac_ctx.

data A pointer to arbitrary data to hash.

len The size, in bytes, of the data to hash.

void hmac final(hmac_ctx* ctx, void* digest)

Performs final transformations on the context and returns a digest from the current hash-state.
Does not destroy the context. It can still be used with the same data stream if needed.

ctx A pointer to an instance of hmac_ctz.

digest A pointer to a buffer to write the digest to.

2.4 Mask and Key Generation 2 IMPLEMENTATIONS

2.4 Mask and Key Generation

Sometimes in cryptography you need to generate hashes or keys of an arbitrary size. Two related, but
different, functions exist to fill this role. The first of the two is a mask generation function (MGF).
A MGF generates a mask of arbitrary length by passing the data with a counter appended to it to a
cryptographic primative such as SHA-256. The second of the two is a password-based key derivation
function. A PBKDF works by using the supplied password as the key for an HMAC and then hashing the
salt for the given number of rounds for each block of output.

void hash _mgfl(const void* data, size_t datalen,

void* outbuf, size_t outlen, uint8_t hash_alg)

Generates a mask of a given length from the given data.

data A pointer to data to generate the mask with.

datalen The length, in bytes, of the data.

outbuf A pointer to a buffer to write the mask to.

outlen The number of bytes of the mask to output.

hash_alg The hashing algorithm to use. See hash_algorithms (Enumerations).

void hmac_pbkdf2(const char* password, size_t passlen,
void* key, size_t keylen

const void* salt, size_t saltlen,
size_t rounds, uint8_t hash_alg)

Generates a key of given length from a password, salt, and a given number of rounds.
password A pointer to a string containing the password.

passlen The length of the password string.

key A pointer to a buffer to write the key to.

keylen The number of bytes of the key to output.

salt A pointer to a buffer containing pseudo random bytes.

saltlen The length of the salt, in bytes.

rounds The number of times to iterate the HMAC function per block in the output.
hash_alg The hashing algorithm to use. See hash_algorithms (Enumerations).

NIST recommends a minimum salt length of 128 bits, or 16 bytes.

2.5 Advanced Encryption Standard (AES) 2 IMPLEMENTATIONS

2.5 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is a symmetric encryption system and a block cipher.
Symmetric encryption means that the same key can be used for both encryption and decryption. A block
cipher is a cipher in which the data is operated on in blocks of a fixed size. AES is one of the most secure
encryption systems in use today, expected to remain secure even through the advent of quantum computing.
It is also fast and more secure than asymmetric encryption for smaller key sizes.

The AES implementation available in this library provides confidentiality only, not integrity. For details on
authenticated encryption, see Authenticated Encryption with HASHLIB.

aes_error_t aes_init(const aes_ctx* ctx, const void* key, size_t keylen,

const void* iv, uint24 t flags)

Configures an AES context given a key and a series of option flags.

ctx Pointer to an AES cipher configuration context.

key Pointer to a buffer containing the AES key.

keylen The length, in bytes, of the AES key.

iv Pointer to initialization vector, buffer equaling the block size in length containing random bytes.
flags A series of cipher options bitwise-ORd together. Pass 0 to use default options.

cipher options flags:

cipher modes: AES_MODE_CBC or AES_.MODE_CTR

CBC padding modes: PAD_DEFAULT or PAD_PKCS7 or PAD_ISO2

CTR initialization vector fixed nonce length: AES_ CTR_NONCELEN(len)

CTR initialization vector counter length: AES_CTR_COUNTERLEN(len)

Passing 0 for flags is functionally equivalent to passing: AES_MODE_CBC | PAD_PKCS7.

Passing AES_MODE_CTR for flags with no other options set is functionally equivalent to passing;:
AES_MODE_CTR | AES_CTR_NONCELEN(8) | AES_CTR_COUNTERLEN(8)

Do not edit the cipher context manually after initialization, you may corrupt the state.
Cipher contexts are stateful and one-directional. Once you use a cipher for encryption or
decryption a flag is set preventing it from being used in the other direction. If you need a
two-way AES session, initialize two contexts using the same key and assign one the IV for the
outgoing stream and the other the IV for the incoming stream.

security considerations:

data length limit: Ciphers begin leaking data after the same key is used on a certain
amount of data. For AES it is recommended that you cycle your key after encrypting 264
blocks of information.

counter length: The size of your counter in CTR mode directly impacts the length of data
you can encrypt before the counter cycles, and the cipher begins leaking information. Leaving
the default behavior is recommended.

2.5 Advanced Encryption Standard (AES) 2 IMPLEMENTATIONS

aes_error_t aes_encrypt(const aes_ctx* ctx, const void* plaintext, size_t len,

void* ciphertext)

Encrypts the given message using the AES cipher.

ctx A pointer to an AES cipher configured by aes_init().
plaintext A pointer to a buffer containing data to encrypt.

len The length of the data to encrypt.

ciphertext A pointer to a buffer to write the encrypted output to.

The AES context is stateful. After a call to aes_encrypt(), you can pass another mes-
sage on the same stream without altering or re-initializing the context by simply calling
aes_encrypt () again.

Once a context is used with aes_encrypt(), attempting to use it with aes_decrypt() will
return AES_INVALID_OPERATION.

Calls to aes_encrypt() are chainable.
aes_encrypt(msgl + msg2) == aes_encrypt(msgl) + aes_encrypt(msg2)
If in CBC mode, this will be true only after any appended padding is removed by the decryptor.

If in CBC mode, padding will be appended automatically by the encryptor. cipher-
text will therefore need to be large enough to hold the plaintext plus any necessary padding.
This is the length of the plaintext rounded up to the next multiple of the block size. If the
plaintext already is a multiple of the block size, another block of padding is added.

aes_error_t aes_decrypt(const aes_ctx* ctx, const void* ciphertext, size_t len,

void* plaintext)

Decrypts the given message using the AES cipher.

ctx A pointer to an AES cipher configured by aes_init().
ciphertext A pointer to a buffer containing data to decrypt.

len The length of the data to decrypt.

plaintext A pointer to a buffer to write the decrypted output to.

The AES context is stateful. After a call to aes_decrypt(), you can pass another mes-
sage on the same stream without altering or re-initializing the context by simply calling
aes_decrypt () again.

Once a context is used with aes_decrypt(), attempting to use it with aes_encrypt() will
return AES_INVALID_OPERATION.

Calls to aes_decrypt() are chainable.
aes_decrypt(msgl + msg2) == aes_decrypt(msgl) + aes_decrypt(msg2)
If in CBC mode, this will be true only after any appended padding is removed.

If in CBC mode, padding will not be removed automatically. This can be done algo-
rithmically quite simply by the user. If using PKCS7, simply read the last byte of the padded
plaintext and strip that many bytes. If using ISO2, simply seek from the end of the padded
plaintext backwards to the first $0x80 byte and strip from that byte forwards.

2.6 RSA Public Key Encryption 2 IMPLEMENTATIONS

2.6 RSA Public Key Encryption

Public key encryption is a form of asymmetric encryption generally used to share a secret key for AES or
another symmetric encryption system. To communicate between two parties, both need a public key and a
private key. The public key is (hence the term ”public”) common knowledge and is sent to other parties in
the clear. The private key is known only to the host. The public key is used to encrypt messages for the
host, and the private key is used by the host to decrypt those messages. The public key and private key are
inverses of each other such that:

encrypted = message Public exponent Gy blic modulus

message = encrypted Privete exzponent O prinate modulus

RSA is very slow, especially on the TI-84+ CE. Encrypting with just a 1024-bit modulus will take several
seconds. For this reason, do not use RSA for sustained encrypted communication. Use RSA once to share
a key with a remote host, then use AES. Also the RSA implementation in this library is encryption only.
This means you will need to handshake with a server to create a secure session, like so:

(a) Connect to remote host. Let that server generate a public and private key pair. Send the public key
to the calculator.

(b) Use hashlib to generate an AES secret. Encrypt that secret using RSA and send the encrypted message
to the remote host.

(¢) Decrypt the message on the server, and set up an AES session using the secret just shared with the
remote host.

rsa_error_t rsa_encrypt(const void* msg, size_t msglen, void* ciphertext,

const void* pubkey, size_t keylen, uint8_t oaep_hash_alg)

Encrypts the given message using the given public key and the public exponent 65537.

Applies the OAEP v2.2 encoding scheme prior to encryption.

msg A pointer to a buffer containing data to encrypt.

msglen The length of the data to encrypt.

ciphertext A pointer to a buffer to write the encrypted output to.

pubkey A pointer to an RSA public modulus.

keylen The length of the RSA public modulus, in bytes.

oaep_hash_alg The hashing algorithm to use for OAEP. See hash_algorithms (Enumerations).

10

2.7 Miscellaneous Functions 2 IMPLEMENTATIONS

2.7 Miscellaneous Functions

void digest_tostring(const void* digest, size_t len, const char* hexstr)

Outputs a textual representation of the hex encoding of a binary digest.

Ex: Oxfe, Oxad, Oxcl, 0xf2 => "FEA4C1F2”

digest A pointer to a digest to convert to a string.

len The length of the digest, in bytes, to convert.

hexstr A pointer to a buffer to write the string. Must be equal to twice the digest length + 1.

void digest_compare(const void* digestl, const void* digest2, size_t len)

Compares the given number of bytes at digestl with digest2 in a manner that is resistant to timing
analysis.

digestl A pointer to the first buffer to compare.

digest2 A pointer to the second buffer to compare.

len The number of bytes to compare.

2.8 Addendum: Authenticated Encryption with HASHLIB

Authenticated encryption is an encryption scheme that produces a ciphertext that is not only obfuscated
but also has its integrity and authenticity verifiable. This can be accomplished in a few ways, the most
common of which are: (1) appending a signature, hash, or keyed hash to a message, and (2) implementing
a cipher mode that integrates authentication.

#2 above is not implemented in HASHLIB. Most of the authenticating cipher modes are computationally-
intensive without hardware acceleration and may not be feasible for use on the TI-84+ CE. While consid-
eration is being given to potentially adding a cipher mode such as OCB or GCM if a sufficiently-optimized
implementation for this platform can be found (or devised), it is possible to construct a ciphertext guarded
against tampering by using method #1, which this library does provide for.

It is my recommendation that whenever you are sending data you need to be truly secure with this library,
you always embed a keyed hash into the message that the recipient can validate. This functionality is
provided by the HMAC implementation shown earlier in this document. Proper application of HMAC for
ciphertext integrity requires the following considerations:

(a) Initialization vector/nonce blocks for encryption are securely pseudo-random.

(b) Encryption and HMAC keys are also securely pseudo-random and are long enough to be considered
secure. Minimum key sizes recommended are 16 bytes.

(¢) You are not using your encryption key as your HMAC key or vice versa. There are attack vectors that
result from using the same key for encryption and authentication.

(d) Append a keyed hash (HMAC) of the initialization vector/nonce, encrypted message, and any other
associated data such as packet headers to the outgoing message. On the receiving side, validate the
HMAC before decryption and reject any message that does not authenticate. The HMAC key can be
an application secret known to both parties or a generated nonce shared alongside the AES encryption
key using RSA or another public key encryption method.

Sample authenticated encryption construction using HASHLIB API

// this assumes that the AES secret ‘aes_key‘ and the HMAC secret ‘hmac_key ¢
// have been negotiated beforehand.

// let’s send a simple ascii string
char* msg = "The daring fox jumped over the moon."

// the header is a size word, containing size of string plus our IV
// header can really be whatever you want, but some arbitrary nonsense as an example

11

4 DISCLAIMER

size_t header = sizeof (msg)+AES_IVSIZE;

uint8_t iv[AES_IVSIZE];

uint8_t hmac_digest [SHA256_DIGEST_LEN];
aes_ctx ctx;

hmac_ctx hmac;

// '!'1! NEVER PROCEED IF csrand_init () FAILS !!!
if (!csrand_init ()) return false;
csrand_fill(iv, AES_IVSIZE;

// initialize AES context with mode, key, and iv
aes_init (&ctx, aes_key, sizeof aes_key, iv, AES_MODE_CTR);

// encrypt message
// aes_encrypt supports in-place encryption
aes_encrypt (&ctx, msg, strlen(msg), msg);

// hash everything you are sending, except the hash itself
hmac_init (&hmac, hmac_key, sizeof hmac_key, SHA256);
hmac_update (&hmac, &header, sizeof header);

hmac_update (&hmac, iv, sizeof iv);

hmac_update (&hmac, msg, strlen(msg));

hmac_final (&¢hmac, hmac_digest);

// ps_send is a pseudo-function implying sending a packet segment over network
ps_send (&header, sizeof header);

ps_send (iv, sizeof iv);

ps_send (msg, sizeof msg);

ps_send (hmac_digest, sizeof hmac_digest);

3 Contributors

Anthony Cagliano [cryptographer, lead developer]

beckadamtheinventor [contributing developer, assembly conversions]

commandblockguy [contributing developer]

Zeroko [information on entropy on TI-84+ CE]

jacobly [ez80 implementation of digest_compare and _powmod for RSA]

4 Disclaimer

HASHLIB is a work-in-progress and has seen very little time as the forerunning cryptography library for the
TI-84+ CE calculator. This means that it has not had much time to be thoroughly analyzed, and due to
some hardware constraints may never offer total security against every possible attack. For this reason, I
heavily advise that however secure HASHLIB may be, you never use it for encrypting truly sensitive data
like online banking and other accounts, credit card information, and the like over an insecure network. It is
likely safe enough to be used to encrypt data transfers and account login for TI-84+ CE game servers and
package managers like the ones currently under development. By using this software you release and save
harmless its developer(s) from liability for data compromise that may arise should you use this software.

LICENSE: GNU General Public License v3.0

12

	Enumerations, Definitions, and Macros
	Implementations
	Cryptographically-Secure Random Number Generator (CSRNG)
	Cryptographic Hashing
	Hash-Based Message Authentication Code (HMAC)
	Mask and Key Generation
	Advanced Encryption Standard (AES)
	RSA Public Key Encryption
	Miscellaneous Functions
	Addendum: Authenticated Encryption with HASHLIB

	Contributors
	Disclaimer

