
[image: image1.png]
Summary :

I) What is GSEngine ?

II) Disclaimer

III) User information

IV) Developper Information

V) In the future

VI) Thanks

I) What is GSEngine ?

Above all, I apologize for my bad english. As it’s not my native language I hope you will forgive me.

The GreyScale Engine is a Graphic Oriented API. Its purpose is to give an easy access to high level functionnality, such as greyscale rendering. It can be used like a .DLL

Developpers that don’t want to waste time building a greyscale engine or another complex piece of code can freely use it to improve the quality of their games and decrease their sizes !!!

Isn’t that magical ???

II) Disclaimer

This App and the test program has been tested on a TI-84+ calc with no problems but I don’t provide any warranty and don’t take any responsibility for any damages this App and the program attached might cause to any calcs.

III) User information

You need to install GSEngine on your calc in order to launch games using its functionnalities.

That only means :

· send GSEngine.8xk to your calc, using the link-software you wish !

· run the App once to install it

· and run your games !!! (any shell should work)
IV) Developper information

For a correct implementation of GSEngine, see the template.

That version is not a final version and I can already tell you that GSE 0.8 will not be compatible with that version because of a “system RAM” restructuration and some other thing.
Note on RAM areas :

GSEngine use a lot of RAM :

- everything from $8000 to $8100 has to stay untouched !!!

- PlotsScreen and AppBackupScreen are used as graph buffers.

- SavesScreen holds the interrupt vector table and the greyscale renderer

Note on ROM calls :
While greyscale enabled some ROM calls may crash your calc because they need interrupt mode 1. I don’t know all of them but _GetKey , _GetCSC and _DivHLby10 are among these f****** ROM calls.

The following ‘guide’ will only cover functions use, their inputs and outputs. The following functions are accessed by a gseCall(function) gseInit excepted which only need a normal ‘call’ .

GseInit :

The gse loader ! Set up the call code needed to access other functions.

Outputs :
a= error code

Values :
0(success

1(GSE AppVar doesn’t exist

2(GSE AppVar is in Flash

3(version not met, user need to get a newer GSEngine

4(App not found (often occured after garbage collecting or defragmenting)

All registers destroyed.
GreyEnable :

Set up the greyscale renderer.

Input :
hl=address of active buffer 1

de=address of active buffer 2

All registers destroyed.

GreyDisable :

Turn off greyscale rendering.

Destroyed : af

FastCopy_m :

Similar to IonFastCopy but maybe a little bit faster.

All registers destroyed.

SwapBuffer :

Swappes active buffers and back buffers. So, what was in back buffers is displayed and back buffers now contain what was previously displayed.

Destroyed : hl, de, bc

CopyBuffer :

Content of back buffers is copied to active buffers and so displayed.

Destroyed : hl, de, bc

Note : Use SwapBuffer whenever possible because it is thousands of T-States faster !!!

ClearBuffer :
Clears back buffers !

All registers destroyed.

ClearActive :
Clears active buffers and so the LCD !

All registers destroyed.

AlignedSprite :

XOR a 8x8 aligned sprite to buffer.
Input :
a= X coordinate

l= Y coordinate

ix= pointer to sprite data

All registers destroyed.

PutSprite :
The same as IonPutSprite but in geryscale.

Input :
a= X coordinate

l= Y coordinate

b= number of rows

ix= pointer to sprite data

All registers destroyed.

AlignedMasked :

This puts an 8x8 aligned masked sprite. The masked part must be dark gray.

Inputs :
a= n + 64*H_FLIP + 128*V_FLIP

where :

- the FLIPS are booleans

- n is the number of the sprite (in the sprite table)

h= x

l= y

de= pointer to start of the sprite table

All registers destroyed.

LargeSprite :
The same as IonLargeSprite but in greyscale.

Input :
a= X coordinate

l= Y coordinate

b= number of rows

c= number of columns (in bytes)

ix= pointer to sprite data

All registers destroyed.
IsoTexturing :

Apply a 16x16 texture to simulate a ground.

Input :
ix= pointer to texture

h= X coordinate of top left corner (of the ground)

l= Y coordinate of top left corner

b= distance between top border and bottom border

* on screen *

c= horizontal shifting of the ground

if c < 0(left shift

if c > 0(right shift

All registers destroyed.

GetBitBoard :

A whole keyboard scanning faster than any other !!!

Output :
ix= pointer to scanned data

All registers destroyed.

Exemple :

bit
DI_MODE, (ix + KI_TOP)

; z flag is set if key has been pressed, otherwise it is reset.

GetK :

Basically the same as _GetCSC.

Output :
a= keycode

GetHardware :

Return a code depending on which model of TI is running the program

Output :
a= code

Values :
0(TI-83+BE

1(TI-83+SE

2(TI-84+BE

3(TI-84+SE

GetHardtoStr :

Return a string depending of the calculator model.

Input :
de= address where to put string (have to be 9 bytes large)

Output :
hl= points to the start of this area

Destroyed : de, bc

GetVersion :

Return the version of GSEngine installed on the calc.

Output :
a= version

DispVersion :

Display the version, in large font, using current coordinates.

Destroyed : af

Contrast.Set :

Set the contrast.

Input :
a= contrast value

Destroyed : af

Contrast.Get :

Get the current contrast value.

Output :
a= contrast value

Contrast.Dec :

Decrease the contrast.

Input :
b= number of times to decrease

Destroyed : af, b

Contrast.Inc :
Increase the contrast.

Input :
b= number of times to decrease

Destroyed : af, b

InFader :

Do a fade-in !!!

Destroyed : af, b
OutFader :

Do a fade-out !!!

Destroyed : af, b

VputS :

Print a NULL terminated string to back-buffers

Input :
hl= pointer to string

All registers destroyed.

VputStoActive :

Print a NULL terminated string to active buffers

Input :
hl= pointer to string

All registers destroyed.

AtoStr :

Convert A to a NULL-terminated string.

Input :
a= number to convert (it’s not a joke !)

de= address where to put the string (4 bytes large)

Output :
hl= start of the string

Destroyed : af, bc, de

HLtoStr :

Convert HL to a NULL-terminated string.

Input :
hl= number to convert (it’s not a joke !)

de= address where to put the string (4 bytes large)

Output :
hl= start of the string

Destroyed : af, bc, de
V) In the future

There is many things left to do in order to improve GSEngine.

Here are the major improvements planned :

· RLE and VRLE decompression, any other compression system will be supported as well if you ask and send me its specification (implementation in 0.8 beta)

· Tilemap management routines (in 0.8 beta)

· Sound playing

Important note :
I have not as much free-time as I would like and that’s why I will welcome any contribution to GSEngine.

If someone has a good routine he can send it to me and I’ll add a new function (without forgetting to give credit to the man, I’m not a f****** stealer !!!)

VI) Contribution

I’m not a lazy man but I must rely on routines which are absolutely not my work and that I only modified in order o make them work in this particular context (APPS means no SMC and my swap-buffering method uses a lot of pointers for graphic functions)

At the moment:

- greyscale interrupt mapper has been written by Diederik Pieter Kingma for his GPP

- GetK is also from DP Kingma’s GPP

-sprites routines are based on Joe Wingbermuehle’s ionPutSprite and ionLargeSprite and also on those that Sean Mac Laughlin put in his tutorial (“Learn assembly in 28 days” for those who do not know it)

VII) Thanks

Sean McLaughlin for its fantastic tutorial. Without him I wouldn’t be able to make anything in assembly !!!
Joe Wingbermuehle for Ion.
Michael Vincent and Dan Englender for hardware informations.

Sean McLaughlin and Joe Pemberton for informations about mode 2 interrupt.

Diederik Kingma for its GrayScale Programming Package. Without him I would have never thought greyscale was possible on a TI-8x !

Detached Solutions for MirageOS.

Every z80 coders for the games they made !!! « Don’t give up the fight » , and use GSEngine to make your games beautiful!

And, of course, YOU, for downloading and, I hope, using, GSEngine !!!

_1180508263

