CPanel Lib V1.0
Developers Guide

By Tamkis
Table of Contents
I. Intro






2
II. Copying CPanel to your Calc



4
III. Settings up CPanel Lib




5
IV. Running CPanel functions



8
V. Global Functions (CPanel)



10-52
VI. How to use XCopy




53
VII. Macros






56-80
VIII. Credits






81
[image: image337.png][image: image338.png][image: image339.png][image: image340.png]

Introduction

Hello, I am Tamkis, and this is my developer’s guide to my unique “library,” called CPanel lib! CPanel lib, short for “Control Panel library,” is a unique library that acts as a front-end for some popular assembly programs from the ticalc.org community, as well as for setting up a simple programming environment for macros/functions. CPanel Lib and programs that use the library only work on Ti-84/Ti-84+/Ti-84 SE calculators with Tios 2.55MP or higher. This is because I made the library on Tios 2.55MP and because older calculators do not have enough RAM to handle CPanel Library. With this in mind, you shall need to update your calculator’s OS to 2.55MP or higher! Unlike other functions and libraries made by other people, almost all of these functions use temporary hacked variables as much as possible. This means that when using these functions, no standard variables in use will be modified. Moreover, the environment allows the developer to make sub-functions or macros within programs, something that is almost unheard of in Ti programming! Almost all of these functions use the wild variable “Ans” (answer) for their input and output, making use of these functions very easy. Ans can be any data type, according to what the last result of a function was.

The library consists of three parts. The first part is the global functions, which are accessed through the program Cln.8xp. These global functions are performed by running the embedded assembly opcodes (made by others) from within CPanel or by running some small external assembly programs. Program Cln.8xp is the library itself, and it just acts as a front-end, which simplifies parameters and provides debug information for these functions. The second part is the macros, which are inside program XCopy. Using the pseudo-copy & paste feature inside XCopy, these macros are supposed to be “included” inside your program, similar to C++ programs
. The third and most important part is the “linker” and “extension table.” The linker refers to the three special lists that are created whenever the library is installed. These three lists are áFlag, áCVars, and áSubs. The first list contains flag statuses, the second list contains statuses for control variables, and the last list contains IDs for what global functions and macros to perform, and for other controls for how to pass program flow when using functions in general. The linker allows everything to work between CPanel, your program, and its included macros. The following chapters will explain how to use this library.

By this point the developer is probably asking, “Well, what can this library DO?” For some examples of its uses from the global functions, one can generate official OS errors, generate errors with custom messages, cleanup all leftover variables from programs, change data types of variables, turn off the calculator, get the calculator’s battery status, enable lowercase characters; un/archive programs, un/lock programs, and delete programs during runtime; and more! For some examples of its uses from included macros, one can convert numbers and fractions to strings for pretty output, split fractions into a numerator and denominator variable, determine the sign of numbers, determine if numbers are even or odd, “convert” lists into strings and strings into lists, convert a row of a matrix into a list, store the results of a string into a string of your choice
, store a string into any Y variable, and much more! For an example of programs compatible with CPanel Lib, check out at my website or at ticalc.org.
Copying CPanel to your Calc

In order to copy the CPanel Lib to your calculator, the user will need several things. For some calculators, specifically the Ti-84 Plus/Platinum editions only, the calculator package came with a CD called Ti-Connect and a USB-to-Mini USB cord. Install the contents on the CD, connect the calculator with the USB cord to the computer, and go to where the user unzipped CPanel.rar with Windows Explorer. Right click the .8xg group files, and select, “Send to Ti-Device.” From there, click “Send to Device.” The user has transferred the CPanel packages! Lastly, push (( to go to the memory screen. Then go down to “group” and select “ungroup” and extract the group files when needed. You will need to archive some programs to save room if you extract all three groups at once. You can archive all programs except Anstype, Asm, PTools, Varasm, and Vartest; the rest will be unarchived when CPanel uses them. After said programs are used, CPanel will re-archive the programs in order to save memory.
[image: image1.png][image: image341.png][image: image342.png][image: image343.jpg]







[image: image344.png][image: image345.png]
[image: image346.png]

For those who did not have this package when they bought their Ti-84 Plus/Platinum calculator, there is still a solution! Download Ti-Connect from the TI website and just use any USB-to-mini USB cable. The cable could be from a PS3, PSP, cell phone, whatever; any type will work. Then follow the steps from the previous paragraph. It is strongly recommended to update your calculator to the latest OS version, and to backup your programs in RAM before using CPanel Lib!
Settings up CPanel Lib
Before you can start to use global functions, sub-functions, and CPanel itself, you will need to learn how to use part of XCopy. XCopy is a program that will pseudo-copy various code for sub functions, the header code, and the footer code to put into your program. The header code is a block of code that will install CPanel lib whenever the program is run (if it is not already installed), will initialize 3 special lists, check if all CPanel programs are on the calculator, archive all CPanel programs that can be archived, and check if all linked programs are on the calculator. The footer code contains the “exploit” needed to run functions and macros from within program, and contains the code to quit a program properly. There are two versions of XCopy: an app version, and a program version. It is strongly recommended to use the app version.
Steps for copying the header and footer code using XCopy:
1. If using the program version, unarchive group CPLib3.8xg on your calculator, and make sure Char.8xp is unarchived. I strongly recommend the developer to archive all other programs, and to delete all leftover variables, because XCopy is huge. Then run XCopy.
2. First, for both version, the program will display the current version of XCopy. Then it will generate a menu. Pick a category from which to copy code or macros. For now, we will pick the first item, for copying the header and footer, and other things.
3. Picking “Hdr+Ftr” will simply copy the header and footer code, and other things. These other things include the hacked variables that I use in my macros, and hidden characters that you can use in your programs. The program will then end. 

[image: image2.png]
[image: image3.png]
[image: image4.png]
Steps for inserting the header, footer, and other things):

1. Generally, to copy code from XCopy into a program, first open up the program editor.

2. Next, goto the line where you would like to insert the code

3. Afterwards, push (((( and then a number for the appropiate string variable to paste the code from. When selecting to copy the header & footer from XCopy, the header was put into Str0, the footer into Str1 and Str2, hacked variable sets into 1-6, and miscellanous characters into Str7. Pick the appropiate string variable to copy the appropiate code. The header code is inserted on the first line of the program, while the footer is at the last line of code. For now, paste str0 for the header code on the first line. When pasting any string from XCopy into a program, do not forget to remove the leading and trailing quotation makrs (“)!
[image: image5.png]
[image: image347.png][image: image6.png]
[image: image7.png]
[image: image8.png]
4. The header code has now been copied! In order to configure the header code to correctly check if all linked programs are on the calculator, modifiy this line of code:

[image: image9.png]
a. If the developer is going to check if one program exists, just change “prgmSynthdiv” into your program name (e.g. “prgmTst”). See pic A
b. If the developer is going to check if more than one program exists, follow the pattern in the picture B, using programs A & B as examples.
A

[image: image10.png]
B

[image: image11.png]
5. Lastly, just repeat the steps in step 3, but with using str2 and str1 in order to copy the footer code to the end of the program. No modifications are necessary for the footer code. Str2 contains two universal labels, which cleanup leftover variables and uninstalls the library. Make a program goto Lbl X2 and X3 in order to cleanup and uninstall the CPanel Library, respectively.
[image: image12.png]
Running CPanel functions

Now that you have both the header and footer code, the developer can begin making his programs! With both the header and footer code, the developer can now run CPanel functions and macros. How to run macros will be covered later.

Whenever the developer runs his CPanel-enabled program, the header code will install the library, by creating three special user-defined lists, named áFlag, áCVars, and áSubs. These three lists contain various flags that are used for running CPanel functions and macros and for changing how the program runs. Below are the standard uses for each slot of each list. These are the official uses of each slot; however, the developer could use these slots for whatever he wants, with the exception of slots with asterisks (*).
	Special List uses

	
	Slot 1
	2
	3
	4
	5
	6
	7
	8

	áFlag
	Angle mode
	Recip mode
	Help mode
	Key
	*Lib install flag
	Custom 1
	Custom 2
	Custom 3

	áCVars
	Repeat
	Step
	Custom 1
	Custom 2
	Custom 3
	
	
	

	*áSubs
	*CPanel Lib func ID
	*Chain flag
	*Macro Return flag
	*Debug flag
	*Macro ID number
	
	
	



I will now explain in depth what each flag for each lists’ slot does. Starting with áFlag, this list contains various statuses for OS settings. The developer can access any slot value of any of these lists by typing in á[Name] ([slot #]), and then use the value in the slot to make the program do different things using if statements and etc. Most of these slot values for the lists, except for áSubs and the fifth slot in áFlag, could be used for any type of flag. The descriptions in the table are just what I have used them for.

The first slot of áFlag contains a value determining what angle mode the calculator is in (Radian or degree mode). This value is changed by running CPanel function #0.26, which generates a menu asking the user what mode to use. This slot’s value is 0 for radian mode, or 1 for degree mode. The second slot is used for how the user wants reciprocal trig functions to be displayed (e.g. csc=1/sin(x) vs. csc=sin(x-1)). This value is changed by running CPanel function #0.27, which generates a menu asking the user what reciprocal style to use. This slot’s value is 0 for the former example, or 1 for the latter example. The third slot is used for “Help” mode, in which the developer can use to make the program display help in a program if it is on. This value is changed by running CPanel function #0.29, which generates a menu asking the user if he wants help mode on or off. This slot’s value is 0 for off, or 1 for on. The fourth slot is used for storing a key button value, for user button input. The fifth slot is reserved, and is used to determine if CPanel Lib is installed or not when initializing the header code of CPanel- enabled programs. The developer should not mess with this slot! Lastly, the sixth, seventh, and eighth, slots are free slots, which the user can use for purpose he wants.

The second list, called áCVars, is used for control variables. These variables change what part of the program will be executed upon launch of the program. These slots are changed by CPanel Lib function #0.28 (described later). The first slot determines what part of the program to execute upon launch, done by an ID#. The second slot is used to run multiple parts of the program, ID by this step variable in this slot. Lastly, the third, fourth, and fifth slots are free slots, in which the developer can use for any purpose.

Lastly, the last and most important list, called áSubs, controls program flow when running CPanel functions and macros. The uses of this list are reserved, and should not be used for other purposes other than what they were designed for! The first slot is the ID number for which CPanel function to perform. The second slot contains an ID to tell what part of a linked program to perform. The third slot is the return flag, which must be enabled before running a macro, so that the program will return to where the macro was called after its execution. This slot is either on (1), or off (0). The fourth slot is the debug flag. When this slot is on (1), debug information will be displayed when running a macro or CPanel function. This debug is invaluable for the developer. Lastly, the fifth slot contains the Macro ID to run.
Running a CPanel Function:

Now that you know what each slot of the three special lists do, the developer can now run CPanel functions! To do this, follow this code template. Order of the code is important!
[image: image13.png]
The first line of the code above simply stores the function ID# to the first slot of áSubs. Replace NUM with the ID number of the function to run. The next line is the variable to input into the function. The third line runs CPanel Lib and the function. The fourth line takes the output of the function and stores it into a variable. The last line clears the function ID slot. Each function has a different data type needed for the input, and each outputs a different data type. Not all functions have inputs and/or variable outputs. Moreover, because of technical limitations, sometimes non-hacked variables are used to make the functions work. These non-hacked variables are known as “leftovers.” This means that some variables that could be in use of the main program might be changed, so the developer should try to avoid using those variables as much as possible. The developer should make sure that he uses the correct data type for inputs and outputs. The developer could also set the debug flag on (áSubs(4)) in order to see debug data.
Below is an example of a CPanel function call. It runs function ID 0.11 (enable lowercase), which has no variable input and no variable output, except for changing an OS flag. 

[image: image14.png]
Global Subfunctions (CPanel)
This section of the document tells the developer about the input, output, use, ID #, and name of each CPanel function. It also shows an example use, output, and debug output of each function. Moreover, it tells what label in CPanel the function is in, if you would like to modify it. For a quick reference for all of the specifics for each function, see CPanel Syntax.xls. All of the example code bits in the following pictures can be tried out in program Tst, which is included in CPanel.rar.
The following prefixes tell what data type is being used:

$=
String

#=
Real number

á=
List

áAns(#)=
A list variable of dim #

Function #0.01:
Asmcall

Label in CPanel:
M1/X2
Use:


Runs assembly “scripts” (in hexified tokens)

Params:

$Ans (hex assembly tokens)
Output:

Runs assembly “script”; varies
Leftovers:

n/a
Notes: 


Use the assembly program prgmProgHex in order to convert an 



assembly program into hexadecimal tokens. It is in CPLib2.8xg. 



To convert the assembly program, input the “boxplot” token from




the catalog and the program name (without the prgm token) into



Ans as a string, and then run ProgHex. The hex tokens will be



outputted. Running assembly scripts that have inputs of ans will



not work. Running assembly scripts that have bad opcodes will



reset the calculator, so the developer should beware!
Example 1: Converting assembly program prgmSnd into hex tokens
[image: image15.png]
Example 2a: Running program to produce Sound of freq T, duration D
[image: image16.png]
[image: image17.png]
Example 2b (Debug)
[image: image348.jpg]
Function #0.02:
Vartest
Label in CPanel:
M2
Use:


Checks existence of variables
Params:

$ans, with string of variable token
Output:

#ans, ID as per vartest documentation
Leftovers:

θ
Notes: 


Results of Vartest:



“0 if var does not exist




 1 if it exists in RAM, but doesn’t contain any data




 2 if it exists in RAM, and contains data




 3 if it exists in archive, but doesn’t contain any data




 4 if it exists in archive and contains data




 (-1 if error (syntax))”

Example 1: Code
[image: image18.png]
Example 2a: Runtime
A is not defined

L1 is in RAM, but has no data

B is in RAM, and has data

L2 is in archive, but has no data
C is in archive, and has data

[image: image19.png] [image: image20.png] [image: image21.png]
[image: image22.png] [image: image23.png]
Example 2b: Runtime (with Debug)

[image: image349.png][image: image24.png]
[image: image25.png]
[image: image26.png]
[image: image27.png]
Function #0.03:
AnsTest

Label in CPanel:
M3
Use:


Determines data type of Ans

Params:

ans (as any data type)

Output:

#ans ID as per Anstype documentation
Leftovers:

θ
Notes: 


Results of Anstype:




“1 Real




 2 List (Real)




 3 Matrix




 4 String




 5 Complex number




 6 Complex list




 0 if error (Ans doesn’t exist))”

Example 1: Code


1



2



3
[image: image28.png]
[image: image29.png]
[image: image30.png]

4



5



6

[image: image31.png]
[image: image32.png]
[image: image33.png]
Example 2a: Runtime

[image: image34.png]
[image: image35.png]
[image: image36.png]
[image: image37.png]

[image: image38.png]

[image: image39.png]
Example 2b: Runtime (Debug)
[image: image40.png]
[image: image41.png]
[image: image42.png]
[image: image43.png]
[image: image44.png]
Function #0.04:
Varasm

Label in CPanel:
M4
Use:


Determines program status

Params:

$ans=”prgmNAME”

Output:

#ans, ID as per varasm documentation
Leftovers:

n/a
Notes: 


Results of varasm:




“-1 if the program is not defined




  0 if the program is defined, unarchived, and is asm




  1 if the program is defined, but archived




 -2 if the program is defined and unarchived, but not asm”

Example 1: Code

[image: image45.png]
Example 2a: Runtime

prgmTamkis is undefined (-1)

prgmAnstype is defined, unarchived, and is asm (0)

prgmTst2 is defined, but archived (1)
prgmFcmpl is defined and unarchived, but not asm (-2) (does not work well, asm program error?)
[image: image46.png]
[image: image47.png]
[image: image48.png]
Example 2b: Runtime (debug)

[image: image49.png]
[image: image50.png]
[image: image51.png]
Function #0.05:
Screenshotter

Label in CPanel:
M5
Use:


Enables a keyhook for taking on-the-calc screenshots

Params:

n/a

Output:

Enables screenshotter keyhook (press “à” to take screenshot)
Leftovers:

n/a
Notes: 


Screenshot is displayed onto Graphing screen. Can be saved from 



there

Example 1: Code

[image: image52.png]
Example 2a: Runtime

[image: image53.png]
Example 2b: Runtime (Debug)


Example 3: Screenshot example

[image: image350.png]







[image: image54.png]







[image: image55.png]
Function #0.06:
Error

Label in CPanel:
M6
Use:


Generates OS error

Params:

áAns(1), OS Error ID#
Output:

Error message as per prgmError documentation
Leftovers:

str0
Notes: 


Error results:




“1 :Overflow


39:No Mode




2 :Divide By 0


40:Validation




3 :Singular Mat

41:Length




4 :Domain


42:Application




5 :Increment


43:




6 :Break


44:




7 :Nonreal Ans

45:Expired




8 :Syntax


46:Bad Address




9 :Data Type


47:Archived




10:Argument


48:Version




11:Dim Mismatch

49:Archive Full (It's fancy!)




12:Invalid Dim

50:Variable




13:Undefined


51:Duplicate




14:Memory




15:Invalid




16:Illegal Nest




17:Bound




18:Window Range




19:Zoom




20:Label




21:Stat




22:Solver




23:Singularity




24:No Sign Chng




25:Iterations




26:Bad Guess




27:Stat Plot




28:Tol Not Met




29:Reserved




30:Mode




31:Link




32:Link




33:Link




34:Link




35:Link




36:?




37:Scale




38:ID Not Found

Example 1: Code

[image: image56.png]
Example 2a: Runtime
[image: image57.png]
[image: image58.png]
Example 2b: Runtime (Debug)

[image: image59.png]
[image: image60.png]
Function #0.07:
Custom Error

Label in CPanel:
M7
Use:


Generates an error with a custom message

Params:

$Ans
Output:

Error with custom message
Leftovers:

str0, N

Notes:


$Ans must only contain CAPITAL letters. The “goto” option of 



the error goes to where the custom “error” was generated in 



CPanel Lib (within Lbl M7)
Example 1: Code

[image: image61.png]
Example 2a: Runtime

[image: image62.png]
[image: image63.png]
Example 2b: Runtime (Debug)

[image: image64.png]
[image: image65.png]
Function #0.08:
Clean

Label in CPanel:
M8
Use:


Deletes all possible leftover variables, restores settings

Params:

n/a
Output:

Deletes leftover variables, restores settings
Leftovers:

N

Notes:


Upon picking to copy the header and footer, XCopy allows you to 



paste a part of the footer that contains a label to run this cleaning 



function. Make the program goto Lbl X2 to run quickly this 



function

Example 1: Code

[image: image66.png]
Example 2: Runtime

[image: image351.png]
[image: image352.png]




[image: image67.png]
Function #0.09:
Data type
Label in CPanel:
M9
Use:


Changes the data type of variables

Params:

áAns(2), áAns(1)=source data type, áAns(2)=destination data 



type. Str1=variable token

Output:

Changes variable in str1 from data type áAns(1) to áAns(2) as per 



Data type documentation
Leftovers:

str1

Notes:


Read the documentation to see about legal data type conversions. 



Doing illegal data type conversions makes the result temporary, and 


can crash your calculator!




Data type results:



 “All with >< work with each other. All with <> work together.




00=Real




01=List




02=Matrix




03=EQU

><




04=String

><




05=Program

<>




06=ProtProg

<>




07=Picture

><




08=GDB

><




09=Unknown

><




10=Unknown Equ
><




11=New EQU

><




12=Complex




13=ComplexList




14=Undefined

><




15=window




16=ZSto




17=Table Range




18-LCD




19-BackUp




20-App




21=Appvar

<>




22=TempProg




23=Group

<>”

Example 1: Code




Example 2b: Runtime (Debug)

[image: image353.png][image: image68.png]
Example 2a: Runtime

The following example converts str0 into the “unknown” data type
[image: image69.png]
[image: image70.png]
[image: image71.png]
Str0 no longer appears in memory

Function #0.11:
Lowercase

Label in CPanel:
S1
Use:


Enables lowercase with Alpha Key

Params:

n/a
Output:

Enables lowercase
Leftovers:

n/a

Notes:


Run it once to enable lowercase, run it again to disable lowercase.




To use lowercase, press alpha twice

Example 1: Code

[image: image72.png]
Example 2a: After Runtime

[image: image73.png]
Example 2b: Runtime (Debug)

[image: image74.png]
Function #0.12:
Sound Generator

Label in CPanel:
S2
Use:


Plays sound (I/O Port) with tone T and duration D

Params:

áAns(Even), áAns(odd)=Frequency (1-256),



áAns(even)=Duration (1

Output:

Plays the list of sound
Leftovers:

T, D, N

Notes:


In order to listen to sound, the user will need to either make a




2.5mm headset, or buy a 2.5mm to 3.5mm adapter, which can be




found at Radioshack for $2-$10. Produces square wave sounds.

Example 1: Code

[image: image75.png]
Example 2a: Sample output


[image: image76.emf]Sndtest.wav


Example 2b: Sample Runtime (Debug)

[image: image77.png]
[image: image354.png][image: image78.png]
Function #0.13:
PTools

Label in CPanel:
S3
Use:


Changes flags of programs
Params:

$Ans, “Flag#+NAME” or “*/space+NAME”
Output:

Changes the prgm as per PTools documentation
Leftovers:

str0
Notes:


PTools results:



“[#]=1 [OR “ “]
Unarchives the program




  [#]=2 [OR “*]
Archives the program




  [#]=3


Locks the program[…]




  [#]=4


Unlocks the program.




  [#]=5


Deletes the program.”
The following examples toggle flags on prgmTST2

Example 1: Code

[image: image79.png]
Example 2a: Runtime


Archiving

Unarchiving


Locking
[image: image80.png]
[image: image81.png]
[image: image82.png]
[image: image83.png]
[image: image84.png]
[image: image85.png]
[image: image355.png]



Unlocking


Deleting

[image: image86.png]
[image: image87.png]
[image: image88.png]
[image: image89.png]
Example 2b: Runtime (Debug)


Archiving

Unarchiving


Locking
[image: image90.png]
[image: image91.png]
[image: image92.png]



Unlocking


Deleting

[image: image93.png]
[image: image94.png]

Function #0.14:
Language

Label in CPanel:
S4
Use:


Gets/Checks the calculator’s language

Params:

áAns(1), 0=get language, 0!=check language
Output:

#ans, ID as per language documentation or error if check fails
Leftovers:

X, N

Notes:


Results of Language:



0:
Neutral


14:
Hungarian




6:
Danish


16:
Italian




7:
German

19:
Dutch




9:
English

20:
Norweigan




10:
Spanish

21:
Polish




11:
Finnish

22:
Portuguese




12:
French


29:
Swedish

Example 1: Code

[image: image95.png]
Example 2a: Runtime


Get language

Comparison (success)

Comparison (fail)

[image: image96.png]
[image: image97.png]
[image: image98.png]








[image: image99.png]
Example 2b: Runtime (Debug)

[image: image356.png]
Get language

Comparison (success)

Comparison (fail)

[image: image357.png]







[image: image100.png]
Function #0.15:
Get Token
Label in CPanel:
S5
Use:


Gets a token via ID

Params:

áAns(1), -2=”, -1=×, et. al,
Output:

$ans with token
Leftovers:

N

Notes:


n/a

Example 1: Code

[image: image101.png]
Example 2: Runtime

[image: image358.png][image: image102.png]
[image: image103.png]
[image: image104.png]
Example 3: Runtime (Debug)

Function #0.16:
Get/Set contrast

Label in CPanel:
S6
Use:


Gets/Sets contrast value

Params:

áAns(1), 0=get value, 0!=change contrast
Output:

#ans OR changes contrast
Leftovers:

X, N

Notes:


Value of contrast ranges from 0 to over 100, where 0 is the lightest




and closer to 100 is the darkest. Contrast effects are temporary, and 




changing the contrast by keystroke restores the contrast to its




previous setting

Example 1: Code

[image: image105.png]
Example 2a: Runtime




Get contrast


Change contrast

[image: image106.png]
[image: image107.png]
Example 2b: Runtime (Debug)

[image: image359.png]




[image: image108.png]
Function #0.17:
Text invert

Label in CPanel:
S7
Use:


Invert/Normalize text

Params:

áAns(1), 0=off, 1=on
Output:

Enables/Disables text inversion
Leftovers:

N

Notes:


Inverted text is temporary, and lasts to about the next ClrHome




command. Disable text inversion to restore the text back to normal.
Example 1: Code

[image: image109.png]
Example 2a: Runtime

[image: image110.png]
Example 2b: Runtime (Debug)

[image: image111.png]
[image: image112.png]
[image: image113.png]
Function #0.18:
Alpha

Label in CPanel:
S8
Use:


Enables alpha key

Params:

n/a
Output:

Enables alpha key
Leftovers:

N

Notes:


n/a

Example 1: Code

[image: image114.png]
Example 2a: Runtime

[image: image115.png]
Example 2b: Runtime (Debug)

[image: image116.png]
Function #0.19:
RunBASIC

Label in CPanel:
S9
Use:


Runs the Ti-BASIC prgm in a string

Params:

$ans=”NAME”
Output:

Runs basic prgm
Leftovers:

str0

Notes:


After running basic prgm, the calculator will return to where




the basic program was called in CPanel (at lbl S9)

Example 1: Code

[image: image117.png]
Example 2a: Runtime

[image: image118.png]
Example 2b: Runtime (Debug)

[image: image119.png]
Function #0.21:
Battery

Label in CPanel:
O1
Use:


Returns battery status

Params:

n/a
Output:

#ans (1-4, where 1 is bad, 4 is excellent)
Leftovers:

θ

Notes:


This function automatically displays the battery status by an 




adjective

Example 1: Code

[image: image120.png]
Example 2a: Runtime

[image: image121.png]
Example 2b: Runtime (Debug)

[image: image122.png]
Function #0.22:
Get RAM

Label in CPanel:
O2
Use:


Returns amount of RAM available

Params:

n/a
Output:

#ans
Leftovers:

A

Notes:


n/a

Example 1: Code

[image: image123.png]
Example 2a: Runtime

[image: image124.png]
[image: image125.png]
Example 2b: Runtime (Debug)

[image: image126.png]
Function #0.23:
Off

Label in CPanel:
O3
Use:


Turns off the calculator

Params:

n/a
Output:

Turns off the calculator
Leftovers:

n/a

Notes:


After turning off, program execution stops (from inside CPanel 



Lib).

Example 1: Code

[image: image127.png]
Example 2a: Runtime

[image: image128.png]
[image: image129.png]
(Calculator off)

Example 2b: Runtime (Debug)

[image: image130.png]
[image: image131.png]







(Calculator off)

Function #0.24:
Run Indicator

Label in CPanel:
O4
Use:


Toggles run indicator on/off

Params:

n/a
Output:

Toggles run indicator
Leftovers:

n/a

Notes:


n/a

Example 1: Code

[image: image132.png]
Example 2a: Runtime

[image: image133.png]
(Notice how there is no run indicator)

Example 2b: Runtime (Debug)

[image: image134.png]
(Notice how there is no run indicator)

Function #0.25:
Tiosver

Label in CPanel:
O5
Use:


Gets/checks TiOS version or calculator model

Params:

áAns(2), áAns(1)= 0=get version, =1 get model




    áAns(2)= -1= get value, -1!= comparison
Output:

#ans or error #48 if comparison fails
Leftovers:

X, N
Notes:


Results of finding calculator model:



“0=83+




1=83+ SE




2=84+




3=84+ SE”

Current Calculator stats of my calculator at time of writing:

[image: image135.png]
[image: image360.png]Example 1: Code

Example 2a: Runtime

Get TiOS version


Get Model

Check TiOS version (passes)

[image: image136.png]
[image: image137.png]
[image: image138.png]
[image: image139.png]
[image: image140.png]
[image: image141.png]
[image: image361.png]
[image: image142.png]
[image: image143.png]








[image: image144.png]
Check TiOS version (fails)
Check model type (passes)
Check model type (fails)

[image: image145.png]
[image: image146.png]
[image: image147.png]
[image: image148.png]
[image: image149.png]
[image: image150.png]
[image: image151.png]
[image: image152.png]
[image: image153.png]
[image: image154.png]
[image: image155.png]
[image: image156.png]
Example 2b: Runtime (Debug)

Get TiOS version


Get Model

Check TiOS version (passes)

[image: image157.png]
[image: image158.png]
[image: image159.png]
[image: image160.png]
[image: image161.png]
[image: image162.png]
[image: image362.png][image: image363.png][image: image364.png]

Check TiOS version (fails)
Check model type (passes)
Check model type (fails)

[image: image163.png]
[image: image164.png]
[image: image165.png]
[image: image166.png]
[image: image167.png]
[image: image168.png]
[image: image169.png]
[image: image170.png]
[image: image171.png]
[image: image365.png][image: image366.png][image: image367.png]
[image: image368.png][image: image369.png]

Function #0.26:
Mode

Label in CPanel:
O6
Use:


Runs “mode” menu to change Angle type flag

Params:

n/a
Output:

Toggles áFlag(1) (Angle type flag)
Leftovers:

n/a

Notes:

Make a reference towards áFlag(1) after running this function in order to change program action based upon angle mode

Example 1: Code

[image: image172.png]
Example 2a: Runtime

[image: image173.png]
[image: image174.png]
[image: image175.png]
Example 2b: Runtime (Debug)

[image: image176.png]
[image: image370.png][image: image177.png]
[image: image178.png]
Function #0.27:
Reciprocal

Label in CPanel:
O7
Use:


Runs “recip” menu to change reciprocal flag

Params:

n/a
Output:

Toggles áFlag(2) (Reciprocal flag)
Leftovers:

n/a

Notes:

Make a reference towards áFlag(2) after running this function in order to change program action based upon reciprocal mode

Example 1: Code

[image: image179.png]
Example 2a: Runtime

[image: image180.png]
[image: image181.png]
[image: image182.png]
Example 2b: Runtime (Debug)

[image: image183.png]
[image: image371.png][image: image184.png]
[image: image185.png]
Function #0.28:
Repeat menu

Label in CPanel:
O8
Use:


Creates “repeat” menu and selection set

Params:

áans(7, 13, or 19), str0 (list of 3 char labels with commas)
Output:

Runs “repeat” menu, changes áCVars(1) and áCVars(2)
Leftovers:

N, str0

Notes:

áans(1)=1, 2, or 3. It determines if you will have a selection set of 3, 6, or 9 items. Even slots after the first slot are for what áCVars(1) will be, while odd slots are for what áCVars(2) will be when an item is picked. 
Example 1: Code

[image: image186.png]
Example 2a: Runtime

[image: image187.png]
[image: image188.png]
[image: image189.png]
[image: image372.png][image: image373.png][image: image190.png]
[image: image191.png]
Example 2b: Runtime (Debug)

[image: image192.png]
[image: image193.png]
[image: image194.png]
[image: image195.png]
[image: image196.png]
[image: image197.png]
[image: image198.png]
[image: image199.png]
Function #0.29:
Help menu

Label in CPanel:
O9
Use:


Runs “Help” menu

Params:

n/a
Output:

Toggles áFlag(3) (Help flag)
Leftovers:

n/a

Notes:

n/a

Example 1: Code

[image: image200.png]
Example 2a: Runtime

[image: image201.png]
[image: image202.png]
[image: image203.png]
Example 2b: Runtime (Debug)

[image: image204.png]
[image: image374.png][image: image205.png]
[image: image206.png]
Misc Function:
Onblock

Label in CPanel:
n/a
Use:


Prevents breaking of program execution

Params:

#ans, 0 for off, 1 for on
Output:

Toggles breaking of program execution on or off
Leftovers:

n/a

Notes:

This function was not included inside CPanel Lib because the program feature becomes disabled after returning from a linked program (in this case, CPanel Lib). The developer will have to unarchive prgmOnblock using CPanel Lib before using it.

How to use XCopy 

For CPanel Lib, “macros” are defined as “included” functions that are inserted into programs in order to simplify tedious tasks. By “included,” this means that this code is inserted into each program, somewhat like the included functions in C++. The developer might think that this is a very inefficient way to use these functions, when they could just be made global CPanel functions be putting them in CPanel. The fact is, doing this would make the CPanel program too large for RAM. Not only that, but accessing the functions inside the program is faster than accessing the function inside the CPanel Lib. Moreover, by allowing macros to work inside the program, the developer creates a framework for making custom-made functions!


The user must have CPanel Lib installed before using macros. The XCopy program copies the macros into strings so that they can be “included” inside programs. Using XCopy is very simple. The user can use either the App version of XCopy, or the program version; either will sufficeth. It is strongly recommended to use the app version, though. The program version of XCopy is inside CPLib3.8xg. Before ungrouping this group, make sure all other programs in RAM are archived, because the developer will need the entire RAM available on his calculator. Also, delete all other variables leftover from programs. Then afterwards, unarchive the group CPLib1.8xg, and make sure prgmChar is unarchived. Afterwards, run prgmXCopy.


Upon running either version of XCopy, a splash screen will appear detailing the current version of XCopy. Afterwards, a menu will appear. Pick items 2 through 4 to pick a macro based upon data type (real, list, or string). After picking a data type category, pick the following macros that the developer wants from the list that appears. A check mark (ð) will appear next to each selected function. Up to nine functions can be selected at once, but this does not necessarily mean that the calculator will have enough RAM to hold all copied macros at once if using the program version; therefore, you might have to run CPanel Lib more than once in order to copy all of your macros. Users of the app version do not need to worry about RAM necessarily. An error message will appear if more than nine macros are selected. 
[image: image207.png]
[image: image208.png]
[image: image209.png]

After picking your macros, return back to the main menu using the “back” selection of the menus. Then, pick the fifth item in the list ([Copy]). The program will start copying the macros into strings str1 to str9. Lastly, the program will generate what is called an “Xtension table” or “jump table” into str0. This allows the program to run a macro, and return to where the program calls the macro.
[image: image210.png]
[image: image211.png]
[image: image212.png]

In case XCopy does not have enough memory to generate the extension table, here is the format of the extension table, in case the developer needs to create the table:
[image: image213.png]
FuncID is the function ID number, according to the following pages, and NN is the label number of the function, which is the decimal part of it. The table starts with “Lbl XT,” and ends with “Goto X.” Below is an example extension table:

[image: image214.png]

Lastly, the developer needs to insert the Xtension table and macros into his CPanel-enabled program. To do that, goto the last line of the program before the footer, press ((((, and then select the corresponding string number. Start with str0 and end with the last number from the number of strings you copied. Remove the leading and trailing quotes (“) from each block of copied code. The macros and the extension table are now copied! 
[image: image215.png]
[image: image216.png]
[image: image217.png]
[image: image218.png]
[image: image219.png]
[image: image220.png]
In order to call a macro, follow this format and example:

“FuncID” is the function ID number, and “Var” is a Real variable for the For loop. “Input” is the variable of the data type of the function for input, and “output” is the variable of the data type of the function for output.
[image: image221.png]
[image: image222.png]
The example runs function 1.01 (number to string converter). It converts the value in variable N into a string, and stores the output into str0.

Macros
Function #1.01:
Number to String

Label in CPanel:
01
Use:


Converts a number into a string

Params:

#ans
Output:

$ans
Leftovers:

n/a

Notes:

This function is meant to be used to convert whole numbers and small decimals into strings. This program will convert scientific numbers into its full length (Reverse polish notation); therefore, it is recommended to use this macro for small decimals

Example 1:
Code
[image: image223.png]
Example 2a:
Runtime

[image: image224.png]
[image: image225.png]
Example 2b:
Runtime (debug)

[image: image226.png]
[image: image227.png]
Function #1.02:
ZFrac

Label in CPanel:
02
Use:


Splits a rational fraction into a numerator and denominator

variable

Params:

#ans (rational decimal/fraction)
Output:

áans(2), áans(1)=numerator, áans(2)=denominator
Leftovers:

W, I

Notes:

This function only works properly with rational decimals/fractions

Example 1:
Code

[image: image228.png]
Example 2a:
Runtime

[image: image375.png][image: image229.png]
Example 2b:
Runtime (debug)

Function #1.03:
Get sign
Label in CPanel:
03
Use:


Determines the sign of a number either as a number equivalent or 

string equivalent

Params:

áans(2), áans(1)=#, áans(2)=0=#, 1.0/1.1=char (- or –)
Output:

#ans (-1, 0, 1) or $ans (-, –, 0, or +)
Leftovers:

n/a

Notes:

The second slot of the input list determines the data type and type of output. A “0” will return a number equivalent (-1, 0, or 1), “1.0” will return “-“, “0,” or “+,” while “1.1” will return “–“, “0,” or “+”
Example 1:
Code

[image: image230.png]
Example 2a:
Runtime

[image: image231.png]
[image: image232.png]
[image: image233.png]
[image: image234.png]
[image: image235.png]
[image: image236.png]
[image: image237.png]
[image: image238.png]
[image: image239.png]
Example 2b:
Runtime (debug)

[image: image240.png]
[image: image241.png]
[image: image242.png]
[image: image243.png]
[image: image244.png]
[image: image245.png]
[image: image376.png][image: image377.png][image: image378.png]
Function #1.04:
Even/odd
Label in CPanel:
04
Use:


Determines if a number is even or odd

Params:

áans(1), áans(1)=#
Output:

#ans (1 for odd, 2 for even)
Leftovers:

n/a

Notes:

Only integers can be inputted; otherwise, an error will occur
Example 1:
Code

[image: image246.png]
Example 2a:
Runtime

[image: image379.png][image: image247.png]
[image: image248.png]
[image: image249.png]
[image: image380.png]







[image: image250.png]



Example 2b:
Runtime (debug)

[image: image251.png]
[image: image252.png]





Function #1.05:
Fraction to string
Label in CPanel:
05
Use:


Converts numeric fractional form of number into a string

Params:

#ans (frac or integer)
Output:

$ans
Leftovers:

W, I, Y

Notes:

Requires macros 1.01 & 1.02 to be included. If the number is an integer, the macro will run macro 1.01, and convert the number into a string without a denominator
Example 1:
Code

[image: image253.png]
Example 2a:
Runtime

[image: image254.png]
[image: image255.png]
Example 2b:
Runtime (debug)

[image: image256.png]
[image: image257.png]
Function #1.06:
Fraction determinator
Label in CPanel:
06
Use:


Determines what type of number the input is

Params:

áans(1)
Output:

#ans (-1 for fraction, 0 for whole, 1 for decimal)
Leftovers:

n/a

Notes:

For this macro, a “fraction” is defined as a number “n,” where 0<|n|<1, a decimal as a non-whole number out of that range, and a whole number as a whole number
Example 1:
Code

[image: image258.png]
Example 2a:
Runtime

[image: image259.png]
[image: image260.png]
[image: image261.png]
Function #1.07:
Radpart
Label in CPanel:
07
Use:


Converts part of a manipulation of a radian coordinate into a string
OR a radian into pi form as a string
Params:

áans(2), áans(1)=#, áans(2)=0=coordinate or áans(2)=1=radian. 
Output:

$ans
Leftovers:

W, I, Y, Z
Notes:

Requires macros 1.01, 1.03, & 1.05 to be included. 
Example 1:
Code

[image: image262.png]
Example 2a:
Runtime

[image: image263.png]
[image: image264.png]
Example 2b:
Runtime (debug)

[image: image265.png]
[image: image266.png]
Function #1.08:
Number to string (signed)
Label in CPanel:
08
Use:


Converts a number into a string with its sign appended

Params:

[Same as macro 1.03]
Output:

$ans
Leftovers:

N
Notes:

Requires macros 1.01, 1.03, & 1.05 to be included. 
Example 1:
Code

[image: image267.png]
Example 2a:
Runtime

[image: image268.png]
[image: image269.png]
[image: image270.png]
[image: image271.png]
[image: image272.png]
[image: image273.png]
Example 2b:
Runtime (debug)

[image: image274.png]
[image: image275.png]
[image: image276.png]
[image: image277.png]
[image: image278.png]
[image: image279.png]
Function #1.09:
Fraction to string (signed)
Label in CPanel:
09
Use:


Converts numeric fractional form of number into a string with the

sign appended

Params:

[Same as macro 1.03]
Output:

$ans
Leftovers:

N

Notes:

Requires macros 1.01, 1.02, 1.03, & 1.05 to be included. Inputting a whole number will cause the program to run the equivalent of macro 1.08
Example 1:
Code

[image: image280.png]
Example 2a:
Runtime

[image: image281.png]
[image: image282.png]
[image: image283.png]
[image: image284.png]
[image: image285.png]
[image: image286.png]
Example 2b:
Runtime (debug)

[image: image287.png]
[image: image288.png]
[image: image289.png]
[image: image290.png]
[image: image291.png]
[image: image292.png]
Function #1.11:
List to String

Label in CPanel:
11
Use:


“Converts” a list with letter IDs into a string with characters

Params:

áans
Output:

$ans
Leftovers:

N

Notes:

Character IDs range from 1 to 37, where 1-26 are A-Z, 27 is θ, and 28-37 are numbers 0-9. Any ID out of range produces no characters
Example 1:
Code

[image: image293.png]
Example 2a:
Runtime

[image: image294.png]
[image: image295.png]
Example 2b:
Runtime (debug)

[image: image296.png]
Function #1.12:
String to List
Label in CPanel:
12
Use:


“Converts” a string with certain characters into a numeric list

Params:

$ans
Output:

áans
Leftovers:

N

Notes:

Valid characters are A-Z, θ, and 0-9
Example 1:
Code

[image: image297.png]
Example 2a:
Runtime

[image: image298.png]
Example 2b:
Runtime (debug)

[image: image299.png]
Function #1.13:
Matrix Row to List

Label in CPanel:
13

Use:


Converts a row of a matrix of specified column length into a list

Params:

[Mat], dim≥(2x2), 

[Mat](last row, 1)=row to copy




[Mat](Last row, 2)=# of columns to get

Output:

áans(column #)
Leftovers:

n/a
Notes:

The last row of the matrix must be added to the original matrix.
Example 1:
Code
[image: image300.png]
Example 2a:
Runtime
[image: image301.png]
[image: image302.png]
Example 2b:
Runtime (debug)
[image: image303.png]
[image: image304.png]
[image: image305.png]
Function #1.42:
String A to String B
Label in CPanel:
42
Use:


Stores StrA into StrB (with ID #s)
Params:

áans(2), where each slot represents string ID#
Output:

Stores the contents of StrA into StrB
Leftovers:

n/a
Notes:

Valid ID #s are 0/10-9, where each ID represents a string number (e.g. 1=Str1)
Example 1:
Code
[image: image306.png]
Example 2a:
Runtime
[image: image307.png]
[image: image308.png]
[image: image309.png]
Example 2b:
Runtime (debug)
[image: image310.png]
[image: image311.png]
[image: image312.png]
Function #1.43:
StrA to YB
Label in CPanel:
43
Use:


Stores/converts StrA into YB (using ID #s)
Params:

áans(2), where each slot represents ID#
Output:

Converts and stores StrA into YB
Leftovers:

n/a
Notes:

Valid ID #s are 0/10-9, where each ID represents a string number/Y variable number (e.g. 1=str1 or 1=Y1)
Example 1:
Code
[image: image313.png]
Example 2a:
Runtime
[image: image314.png]
[image: image315.png]
[image: image316.png]
Example 2b:
Runtime (debug)
[image: image317.png]
[image: image318.png]
[image: image319.png]
Function #1.44:
YA to StrB
Label in CPanel:
44
Use:


Stores/converts YA into StrB (using ID #s)
Params:

áans(2), where each slot represents ID#
Output:

Converts and stores YA into StrB
Leftovers:

n/a
Notes:

Valid ID #s are 0/10-9, where each ID represents a string number/Y variable number (e.g. 1=Str1 or 1=Y1)
Example 1:
Code
[image: image320.png]
Example 2a:
Runtime
[image: image321.png]
[image: image322.png]
[image: image323.png]
Example 2b:
Runtime (debug)
[image: image324.png]
[image: image325.png]
[image: image326.png]
Function #1.45:
YA to YB
Label in CPanel:
45
Use:


Stores YA into YB (using ID #s)
Params:

áans(2), where each slot represents ID#
Output:

Stores YA into YB
Leftovers:

n/a
Notes:

Valid ID #s are 0/10-9, where each ID represents a Y variable number (e.g. 1=Y1)
Example 1:
Code
[image: image327.png]
Example 2a:
Runtime
[image: image328.png]
[image: image329.png]
[image: image330.png]
Example 2b:
Runtime (debug)
[image: image331.png]
[image: image332.png]
[image: image333.png]
Function #1.46:
Crunch
Label in CPanel:
46
Use:


Removes ALL white space in strings (for equ evaluation)
Params:

$ans
Output:

$ans
Leftovers:

N
Notes:

n/a
Example 1:
Code
[image: image334.png]
Example 2a:
Runtime
[image: image335.png]
Example 2b:
Runtime (debug)
[image: image336.png]
Credits:
Although one person made CPanel Library, the library links together the best development software from Ticalc.org’s file archives. Without the authors who created these various development programs, CPanel Lib, would cease to exist. Moreover, many people have motivated the author throughout his life in helping him to pursue a programming career.

Credits for CPanel Lib components:
All credits go to various authors at ticalc.org
External assembly programs:

Sven Thomas, for prgmScrnshot (renamed as prgmSS), prgmDatatype, and prgmAsm for running assembly scripts (see next list)

Harold Aptroot, for Chars3 (renamed as prgmChars)

Jack Haufman/Haveacalc, for prgmErrors

Spencer Reardon, for prgmGenerr

?, for prgmvarasm
Johan Rydh, for prgmAnstype, prgmVartest
David Lindström (Cirrus Programming), for prgmPTools and prgmRunBasic

Justin Wales, for prgmOnblock

Michael Vincent, for prgmSetcon, prgmInvd

Internal Asm scripts/basic programs:

?, prgmnbr2str

Zeda Elnara, Battery Status script

Philipp Schulz, prgmLangchk
David Lindstroem, prgmTIOSver

Andree Chea, prgmZCalcver
aA, various asm scripts from aAhexprgms (APD, amount of ram, toggle lowercase,)

Michael Vincent, Basic tools V1.0 (prgmInve, prgmZAplha, prgmContrast)

Matthew Young, prgmZFrac
Jason G, prgm ZStol, prgmZLtos
Andrew Leech for creating prgmSnd, and James Montelongo Jr. for porting the program to new calculator models 
Other tools (used for Tamkis’ original macros and for making XCopy for CPanel Lib)

Harold Aptroot, for Chars3 (renamed as prgmChars)

Sven Thomas, prgmProghex (used for converting assembly programs into pure hex for asm scripts) Joe DiSalvo, for showing me how to make subprograms (83 plus Subroutines.txt)
Special Thanks

Tamkis would not be programming at all if he were not first introduced to programming from his Computers Merit Badge counselor, Steve Halavanja. He first introduced Tamkis to programming through a requirement, which asked the Scout to make a simple computer program. From this requirement, Tamkis first learned to program with GW-Basic, and has since learned plenty of other programming languages and programming tricks.

To Mr. O’Neill, Tamkis’ English Composition and Grammar teacher, who, through his class, taught Tamkis how to write in excellent English for his technical manuals.

To Mr. Campbell, who taught Tamkis how to formally program (through C++).

To various math teachers (Mrs. Lucy, Mrs. Semich, Mr. Campbell, Mrs. Churovia, Mrs. Goss, et.al.), who have taught me the science and power of math

Lastly, to Sven Thomas and Michael Vincent, for all of their awesome asm programs!
Copyright (©) “Tamkis”

Early Summer 2011



Email: � HYPERLINK "mailto:Kamtis72@yahoo.com" ��Kamtis72yahoo.com�

� HYPERLINK "http://tamkis.tripod.com/" ��http://tamkis.tripod.com/� 

� HYPERLINK "http://tamkis.tripod.com/ProgLog/" ��http://tamkis.tripod.com/ProgLog/�

 (This manual and its programs can be freely distributed [with credit] for educational purposes)



This document includes special characters from Ti fonts and the Transistor font included in CPanel.rar. If the characters below do not match the picture, goto the hidden folder C:\Windows\Fonts, and cut and paste the .ttf font files from CPanel.rar there. Enable hidden files & folders from control panel to see folder.

(((	�

èåÆÖÕ	�

èåÆÖÕ	�

Hola!		�





� (Originally, Cln and XCopy were supposed to be one program with all global functions, but it was too huge, so now the library has been split into global and sub-functions and into two programs). I figured that the use of “including” macros into programs would be quicker than the calculator constantly needing to unarchive and archive a second large program for global functions.



�Good for Object-oriented programing



�Change directions to reflect app!



[image: image381.png]_1367246807/Sndtest.wav

