Re: Pi


[Prev][Next][Index][Thread]

Re: Pi



One simple explanation is :

PI is the circumference of a circle divided by its diameter.
But the circumference cannot be measured or calculated exactly.
Mathematicians get an approximation of this circumference, and hence of PI,
by calculating the circumference of a regular polygone with, say 1000 sides.
This can be done exactly with a little trigonometry.
This calculation can be generalised to a regular polygone with n sides.
Then mathematicians have a special procedure - called limits - to check what
happens when n goes to infinity. So we get better and better approximations
of PI.

Thats why all the formulas you got from other TI-friends involve
trigonometry and/or infinite calculations.

Jan Vermeylen,
Belgium.

��������������������������������������������������������
� Rhombus
� Software, Calculators, Books and Posters
� for Mathematics Education.
��������������������������������������������������������
� Rue Philippe Speth Straat 97
�  2950 Kapellen
� Belgium
�������������������������������������������������������
� tel & fax : (++ 32) (0) 3 664 45 54
�������������������������������������������������������
Have a look at our products and please visit :
http://www.rhombus.be
�������������������������������������������������������


-----Oorspronkelijk bericht-----
Van: Kyle Steffen <rosco@execpc.com>
Aan: GRAPH-TI@LISTS.PPP.TI.COM <GRAPH-TI@LISTS.PPP.TI.COM>
Datum: dinsdag 10 maart 1998 04:05
Onderwerp: Pi


>    I am a Senior at Ozaukee High School in Fredonia, Wisconsin.
>Yesterday while sleeping through a boring lecture on related rates,  I
>started to think about Pi.  I blurted out the question, How do you find
>Pi?  Of course my teacher didn't know.  Is there some way to find it
>without relying on physical measurments?  If it can only be found by
>physical measurements, how can mathematicians claim that they have found
>the numerical equivalent to 200 decimal places?.
>                                Kyle Steffen
>



Follow-Ups: