Re: Pi
[Prev][Next][Index][Thread]
Re: Pi
One simple explanation is :
PI is the circumference of a circle divided by its diameter.
But the circumference cannot be measured or calculated exactly.
Mathematicians get an approximation of this circumference, and hence of PI,
by calculating the circumference of a regular polygone with, say 1000 sides.
This can be done exactly with a little trigonometry.
This calculation can be generalised to a regular polygone with n sides.
Then mathematicians have a special procedure - called limits - to check what
happens when n goes to infinity. So we get better and better approximations
of PI.
Thats why all the formulas you got from other TI-friends involve
trigonometry and/or infinite calculations.
Jan Vermeylen,
Belgium.
��������������������������������������������������������
� Rhombus
� Software, Calculators, Books and Posters
� for Mathematics Education.
��������������������������������������������������������
� Rue Philippe Speth Straat 97
� 2950 Kapellen
� Belgium
�������������������������������������������������������
� tel & fax : (++ 32) (0) 3 664 45 54
�������������������������������������������������������
Have a look at our products and please visit :
http://www.rhombus.be
�������������������������������������������������������
-----Oorspronkelijk bericht-----
Van: Kyle Steffen <rosco@execpc.com>
Aan: GRAPH-TI@LISTS.PPP.TI.COM <GRAPH-TI@LISTS.PPP.TI.COM>
Datum: dinsdag 10 maart 1998 04:05
Onderwerp: Pi
> I am a Senior at Ozaukee High School in Fredonia, Wisconsin.
>Yesterday while sleeping through a boring lecture on related rates, I
>started to think about Pi. I blurted out the question, How do you find
>Pi? Of course my teacher didn't know. Is there some way to find it
>without relying on physical measurments? If it can only be found by
>physical measurements, how can mathematicians claim that they have found
>the numerical equivalent to 200 decimal places?.
> Kyle Steffen
>
Follow-Ups:
- Re: Pi
- From: Bart Haagdorens <s5025057@KHK.BE>