Block Diagram
Algebra R1
Block diagram algebra solver for TI89 and
TI92P, solve response in all nodal points of BDA circuit. Allow using blocks
like source, transfer function, sum, gain, integrator etc.. For solving dynamic
or discrete systems needs “Laplace and Z transform”.
(http://www.ticalc.org/pub/89/basic/math/lzt.zip)
Installation
Send file named simR1.89g to your
calc
on calc: Run sim\install() and
choose Archive
Included
function:
sim( [ blck1 ; blck2 ; … ; blckN ] )
Supported
blocks:
uc( out , U(s|z) ) Complex source
ut( out , u(t) ) Transitional
source
ud( out , u(k) ) Discrete
source
tf( in , out , F(s|z)
) Transfer
function
in( in , out , init.
conditions ) Integrator
//each in and out
is a NAME of NODAL POINT or list of NNPs
tf( { in1 , in2 , -in3
} , out , 1 ) Sum
tf( in , out , GAIN ) Gain
tf( in , { out1 , out2
, -out3 } , F ) Branching
tf( { 1 , 2 , -3 } , { 4 , 5 , -6 }
, F(s) )
//when two or more outputs are
connected to the same NP, SUM is automatically added.
tf( in , out ,
z/(z-1)) ; ud( out , init. conditions )
or Accumulator
(discrete integrator)
tf( in , out , 1/(z-1))
; ud( out , init. conditions )
3 ways to
realize SUM:
I.
uc( 1 , u1(s) );
uc( 2 , u2(s) );
tf( { 1 , -2 } , 3 , 1 );
tf( 3 , 4 , f(s) );
II.
uc( 1 , u1(s) );
uc( 2 , u2(s) );
tf( { 1 , -2 } , 4 , f(s) );
III.
uc( 3 , u1(s) );
uc( -3 , u2(s) );
tf( 3 , 4 , f(s) );
4 ways to
realize feedback:
I.
uc( 1 , u1(s) );
tf( { 1 , -3 } , 2 , 1 );
tf( 2 , 4 , f(s) );
tf( 4 , 3 , G );
II.
uc( 1 , u1(s) );
tf( { 1 , -3 } , 4 , f(s) );
tf( 4 , 3 , G );
III.
uc( 2 , u1(s) );
tf( 2 , 4 , f(s) );
tf( 4 , -2 , G );
IV. for G = 1;
uc( 1 , u1(s) );
tf( { 1 , -4 } , 4 , f(s) );
Example:
Full
description:
uc( 1 , u1(s) ); /a
ut( 6 , w ); /b
tf( { 2 , 3 } , 7 , 1 ); /c
tf( { -7 , 6 } , 5 , 1 ); /d
tf( 1 , 2 , f1(s) ); /e
tf( 4 , 3 , f2(s) ); /f
tf( 5 , 4 , r(s) ); /g
Reduced
description:
uc( 7 , u1(s)*f1(s) ); /a/c/e
ut( 6 , w ); /b
tf( { 6 , -7 } , 7 , r(s)*f2(s) ); /d/f/g
Jiri Bazant
georger@razdva.cz