TI-83 Basic Programming Optimization Tips

By Alexander Weissman

A Flabberghast Software Effort

Situation: you just finished creating this really cool TI83 BASIC role-playing game (yes, asm fanatics, BASIC games can be good), and you take it for its first beta test. Halfway through the game, your character dies. No, it wasn’t a mage’s lightening bolt, or the two-handed sword of a warrior. It was the sneak attack of ERR:MEM. You begin deleting all of the other great programs you wrote, hoping to free up some space for the game to run. You test the game once again, and halfway through the game…you guessed it. Well, you could delete everything except the game. Or you could get a graphlink cable, and transfer everything to your computer, delete all but the game, play it, and then transfer all your programs back to the calculator. These are all very cumbersome and annoying ways to deal with the ERR:MEM problem.

Perhaps the best way to improve your program so it doesn’t give you the memory error is optimizing the code – making your program do the same thing with fewer lines of code and in less time. Discussed below are some minor syntax alterations you can make to your program to condense it a bit. Lesson 2 will explain how you can condense entire blocks of code through simulated functions and conditional expressions.

Lesson 1: Taking out the trash

There’s a lot of trash inside a lot of programs. Lets look at a couple of things you can do to clear out the garbage and make your program faster and less memory intensive.

A. If –Then-End

Suppose you have some kind of “exit” routine in the main loop of your program. “G” is the variable you have saved getkey to. You have set the “Clear” button (num. 45) as an exit key.

If G=45
;if the getkey input was key #45 (clear)

Then

;then

Goto E

;jump program execution to the exit label E

End

;End the If-then statement

.

.

Lbl E

;Exit label (E)
This can be shortened substantially. If you have an If-then statement that executes only one command (in this case Goto E), you can eliminate the “Then” and the “End”. Save yourself some bytes! Here’s how it will look now:

If G=45

Goto E
.

.

Lbl E

You just saved some memory! You must be careful not to do this with if-then statements that have more than one command. For example, in the following block that decides whether to move two pixels to the right or not,

If (G=26)

; if the right arrow key was pressed

Then

; then

Pxl-On(R,C+1)
; print a pixel one place to the right of (R,C)

Pxl-On(R+1,C+1)
; print a pixel one place to the right and below (R,C)

End

; End If-then
If you were to try rewriting it as

If (G=26)

; if the right arrow key was pressed

Pxl-On(R,C+1)
; print a pixel one place to the right of (R,C)

Pxl-On(R+1,C+1)
; print a pixel one place to the right and below (R,C)

Only the first command would be part of the condition. In this case, the second Pxl-On command would always be executed, whereas the first would only be executed when the right-arrow was pressed. This is probably not what was desired.

B. Extraneous symbols

Many commands have syntax like:

Output(1,1,”YOU MEET A MAGE”)

OR

For(I,1,10)

OR

Text(10,10,”YOU DIE”)

OR

Disp “FOUND A POTION”

You can optimize these commands very easily – remove the ending quotes and parentheses, and the command will still work.

Output(1,1,”10 DAMAGE”)

CAN BE REWRITTEN AS

Output(1,1,”10 DAMAGE

This, while only saving 2 bytes/command, will save hundreds if you have a large text-based RPG that contains a lot of these statements.

DO NOT do this, however, if the quotes and parentheses are not the last parts of the command. For example, DON’T convert

Menu(“HELLO”,”ENTER”,1,”EXIT”,2)

to

Menu(“HELLO,”ENTER,1,”EXIT,2

It won’t work! The interpreter will not be able to distinguish between what’s a title, what’s a label, and what’s a message.

*One more thing:

If you have a command with multiplication and addition, lose the multiplication signs! The TI-83 has an order of operations protocol that will allow it to realize to do multiplication before addition.

A*B+C*D(E

CAN BE REWRITTEN AS

AB+CD(E

Be careful when you do this, though. Remember your order of operations, and do not alter a command if you think the interpreter will read it differently from the way you want it to be read.

C. Faster variables using Ans

If you have ever used your calculator for standard calculation functions (I certainly hope you have!), you may know that inserting ‘Ans’ (found [2nd] [(-)]) will cause the calculator to evaluate using the last calculated result in place of ‘Ans’. For example, lets say you calculated

(4(10)-(7(6)+4

2

Ans/(9-7)

1

The calculator would substitute the value 2 in for Ans. It may not surprise you to
hear that any expression, whether executed directly or in a program, returns a value to Ans. You can use this fact to improve speed in most instances that involve only one variable. Because the Ans variable is stored in a different part of memory from the other variables (A-(), the calculator can access it faster. Lets look at the getkey command. When the getkey command it executed, it stores the number of the last key pressed (as according to the chart in your manual) to a variable, as well as Ans. If no variable is specified, it simply stores this value to Ans.

getkey(G

;stores the number of the last key pressed to ‘G’ AND ‘Ans’

If G=21

;If the [2nd] key was pressed…

…

getkey

;stores the number of the last key pressed to ‘Ans’

If Ans=21

;If the [2nd] key was pressed…

…

Thus, when we want to access the number of the key last pressed, we simply access Ans, which can be used in conditional statements, etc. One must be careful in using this, however. If you execute some other command in between the creation of Ans and the usage of Ans, Ans WILL BE OVERWRITTEN with the value of the most recent expression. Thus, you can only use this when the code between the creation and usage is made up only of statements that return no value - conditional statements (but not necessarily their commands), jump statements, Output(, Disp, and graphing statements. So in this case:

getkey

;stores the number of the last key pressed to ‘Ans’

If Ans=24

;If the [Left] key was pressed…

Goto 1

;jump execution to Lbl 1

If Ans=26

;If the [Right] key was pressed…

Goto 2

;jump execution to Lbl 2

If Ans=21

;If the [2nd] key was pressed…

Disp “U SUK GIT A LIEF
;Print an AoLoserism

There would be no problem. However, add some sort of expression between getkey and the end:

getkey

;stores the number of the last key pressed to ‘Ans’

If Ans=24

;If the [Left] key was pressed…

Then

;Then…

Disp “HELLO

;Print greeting

13(2(A

;Store ‘26’ to A, and, unwittingly, to Ans

End

;End If-Then

If Ans=26

;If the [Right] key was pressed…

Disp “GOODBYE

;Get lost

When someone presses the Left key, it will print HELLO, as well as store the value 26 to A, and, as a side-effect, to Ans. Immediately afterwards, the next conditional statement will test Ans, find it to be 26, and print GOODBYE, which is probably what was not desired. Note that conditional expressions (for example, A=1 without the ‘If’ before it) WILL return a value, while conditional statements (If A=1) will not.

D. Thanks!

Thanks for reading TI-83 Optimization Tips and Tricks Lesson 1! If you found this useful, and are interested in future lessons, please let us know.

flabberghast@techie.com
Or visit our web page: http://www.flabberghast.xs3.com/
