TI-83 Plus Developer Guide

Version 1.0

Hyperlinks
Hyperlinked items are indicated with a thin gray border. All Table of Contents and Index page references are hyperlinked to the appropriate page.

Important information

Texas Instruments makes no warranty, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely on
an “as-is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental,
or consequential damages in connection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability of Texas Instruments, regardless of
the form of action, shall not exceed the purchase price of this product. Moreover, Texas
Instruments shall not be liable for any claim of any kind whatsoever against the use of
these materials by any other party.

The latest version of this Guide, along with all other up-to-date information for
developers, is available at www.ti.com/calc.

© 1999 Texas Instruments Incorporated

Z80 is a trademark of ZiLOG, Inc.
IBM is a registered trademark of International Business Machines.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Table of Contents

Chapter 1: Introduction

T1-83 Plus Developer Guide..........ccoeevviiiiiiiiiiieeeiiieeeei, 1
Conventions Used in thisS GUIE...........coeveviiiiieiiiiiiceeeee e, 1
Purpose of this GUITE ..o 2
Structure of thiS GUIAEcoveiiiiiiieee e, 2

Chapter 2: T1 -83 Plus Specific Information

AFCHITECIUIE ... 3
Hardware Layercoeeiiiiii i 4

Z80 CPU aNd MEIMOIYuuiiiiiiiiaaia e 4
Z80 RAM SITUCKUIE ...)
SYSEM RAM ... 6
USEI RAM L. 6
TemPOrary RAM. ... e 6
Floating PoOiNt STACKcoiiii i 6
Free RAM L e 7
OPErator STACK.......ooviiiiiicei et ——————— 7
SYMDBDOI TADIE ... 7
Hardware STacCKoooooiiiiiiiiie e 7
Flash ROM SHIUCKUIEooeeiiiiiiie et 8
2 ToT0) A (@fo]0 (o) I Y =T 9
CertifiCatiON AIBA ... ccii e e e et e e e e e e e eeanaee 9
Operating SYStem (OS) AFCacciieeeeeiiieiiiiiiie e eee e e e e e e eeaaens 9
CertifiCate LISt ATa......cciiiieeiiiiie et e e e e e e eeeannes 9
User APPS (Calculator Software Applications)/Data Area.................... 9
Swap Area/User APPS/Data Al acccccuuuuuuviiiiiiiiiiiiiiieeeeeaeeaeeeaeeen, 10
System Development ENVIrONMENL...........ccovviiiiiiieeeieeeiiiie e, 10
SYSIEM ROULINES ...ttt 10
RST ROULINES. ... 11
SYSEM RAM AFCBS....cuiueiiii it e e e 11
YY) (=] 4 I = T 1 RSP 11

OP1 through OP6 RAM REQISIENIS......ccvvviiiieiiiiiiiiieeeiiiee 16

Safe RAM Locations for Application USe...........cccoovvvvviviicciniieeennn. 17
System VariableS Ar€a............uueeeieiiiiiiiiiiiiiiiiiiiiie 18

TI-83 Plus Developer Guide Initial Release October 29,1999 i

Table of Contents (cont.)

System Variables that are Both Input and Output............ccccoeeveeeennee. 18
System Variable CharacteristiCscccueeeiieiiiiiiiiie i, 18
Storing and Recalling System Variable Values..........ccccccccoovevvnnnnnnnn. 19
System Variables that Are Output ONlY ..o 21
USEI RAM L. et et 21
Variable Data StrUCUIEScoeeeeiiiiiib bbb 21
Numeric Based Data TYPESuuvveiiiiieeiiiiee ettt 21
Real Data TYPe SrUCIUIEceviiiiiiiiiiiei e 22
Complex Data TYpe StrUCIUIEcoouveieiiiiee e 22
Real List Data Type StrUCLUIeoocuvviieieee e 22
Complex List Data Type StrUCIUIecoccveveiiiiieeiiiiie e 23
Matrix Data TYPe StrUCLUIEccovvviviiiieiiieeeeeeeeeeeeeeeeeeee e, 23
Token Based Data TYPES ..cocouveiieiiiiiee ittt 24
TI-83 PIUS TOKENS .ottt 24
Program, Protected Program, Equation, New Equation,
and String Data TYPe StIUCLUIES.coouuviieiiiiieeriieee e 24
Screen Image Data TYpe StrUCIUIEvvieiiiiiiiiiiiinn e eens 24
Graph Database Data Type SIrUCIUIEc.eeveiiirieeiiieiee e 25
Unformatted AppVar Data Type Structure........cccccevvveveveveeieeeeeeeeeeennnn, 25
Guidelines for AppVar USage.........cocouveeiriiiieeiiieieeniiee e 25
Variable Naming Conventions...............viieeeeiiiiieeeec e 25
Variable Name SPellingsS.........coouiiiiiiiiiiiiiiee e 27
Predefined Variable Namescccuveiiiiiiiiiiii e 27
Variables: A—Zand B......ccceeevveeiiiie e 27
List Variables: L1 — LBoocuueiiiieeieiiiiieee e 27
Matrix Variables: [A] — [J] «eoeooveeeeiiiiee e 28
Equation Variables: Y1 — Y0, X1t — X6t, Y1t — X1t,
rL =16, U(N), V(N), W(N) e 28
String Variables: Strl — StrO.......ccceeiiiiiiiiiiee e 29
Picture Variables: PICL — PiCOcoooiviiiiiieiiiiieieee e 29
Graph Database Variables: GDB1 — GDBOcccvvvveeeeeeiinnnns 30
Variable: ANS ... 30
User-Defined Variable Names ... 30
USer-Named LiStS.......ccoouiiiiiiiiiieie et 31
User-Named Programscc.eeeoueeieiiieeee e 31
User-Named APPVArSuuuuueieiiiiiiineiinnniennenennnnnrnnnnnnerernrnrnrnnns 32
Accessing User Variables Stored In RAM — (Unarchived)............ 32
Accessing Variables that Are Not Programs or AppVvars............... 32
Accessing Programs and AppVar Variables..............ccccccvvviienennn. 33

ii Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

Output from a Variable Search on the Symbol Table 33
Creating Variables............ccooiiiiie e 35
Storing to Variables ... 38
Recalling Variables.............cciiiiiiiiii e 39
Deleting Variables ... 40
Archiving and Unarchiving..............coooiiiiiiiiiiiiiii e, 42
Related ROULINEScooiiiiiiiiiee et eee e e e 43
Accessing Archived Variables without Unarchivingccccccceee.. 44
Manipulation ROULINEScooviiiiiiiiiiiiiiiieeeee) 48
List EIement ROULINEScoiiiiiiiiiiiiie e 48
Matrix Element ROULINEScooiiiiiiiiiee e 48
Resizing AppVar, Program, and Equation Variables 49
Symbol Table StruCtUIe............uiiiiieeeeiie 51
Floating Point Stack (FPS)........cciiiiiiieiiieeeie e, 56
Naming CONVENTION........cooiiiiiiiiii e 57
General USE RUIBS......c.coi ittt 57
FPS System ROULINESooooiiiiiiieieee e 58
FPS Allocation ROULINESccoiiiiiiiiiiiieee e 58
FPS Deallocation ROULINEScoocvvviiiiiee s ciiiieeeee e e 59
Copy Data To and From Existing FPS ENtries.........ccccccoviiiiiieeneennnnns 60

DIIVEIS LAYI et 63
(=Y 0T 7= T o SRR 63
DISPIAY - 70
Displaying Using System ROULINES............ieeiiiiiieeieieeeeeieee e 70
Display Utility ROULINES.........coooiiiiiiiiiiiiee e 70
DiSPlaying TeXt.....cei i e e 71
Formatting Numeric Values for Displayueeeeeiiiiiiiiiiiiiiiiiiennnnn, 75
ENtry POINS. ..o e 75
Modifying Display Format Settings...........uueeeeeiiiiiiiiiiieieeiiiieeeeee 76
Writing Directly to the Display Driver...........cocovcieeiiiiieiiiiieeeeeee s 76
Reading the Display Driver After Setting X or Y Coordinates 78
CONLFASE CONIOL...uutiiiiiiiiiiiiiiiiiee ettt 80
SPIIt SCrEEN MOUESuiiiiiiiiiiiiieiieii ettt a e e e e e aaeeees) 80
Graphing and Drawing — What's the difference?...........cccccuvnnnnnnn. 82
DrAWING ..o e e 82
L€ =1 0] 1T PSPPSR 82
Graphing and Drawing Utility ROULINES............cccevviiiiiiiiiiii, 82
Drawing Routine SPecifiCs ..o, 83
Graphing RoOUtINE SPECITICS......uuuuiiiiiiiiiiieieeeee e 86

TI-83 Plus Developer Guide Initial Release October 29,1999 iii

Table of Contents (cont.)

Graph WINDOW SettiNgS......ccvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 86
Graphing in a Split SCreencovviiiiiiiie e, 86
Graphing Routines and System Flags...........ccccovviiiiiiiiiiiiiiienennnnn, 87

RUN (BUSY) INAICALONvvuiiieeeiieeece e 89
APD™ (Automatic POWer DOWN™)uuiiiviiiiiiiiiiiiieieieeeeeeeeeeeeeeeee 90
LINK POt 91

Tools and ULIlItIES Layer......ccovveeiiiiiiiiiiieeeeeeeiiiiee e 97

Error HandIErs.......ooooo i, 97
Nested Error HandIerscooiiiiiiiiiiiis e 99
ULIlItY ROULINES ...vveie e e e 100
Floating-Point Mathooovviiiii, 100
Miscellaneous Math FUNCHONScvviiiiiiiiiiiiieii, 102
Floating-Point Math Functions that Output Complex Results....... 102
CompleX Math........ooooiiiiii e 103
Other Math FUNCLIONScooiiiiiici e 105
FUNCLION EVAlIUALION........uiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 106
Parse ROULINEuuiiiiii e 106
Temporary Variables.........cccooiii i 108
Using Temporary Variables ... 109
Managing Temporary Variablesccccceeiiiiieiiiiiiieeiiiieee e, 109
Deleting Temps and Setting (PTemMpPCNL) ...coooeveeeeeiiriiiiiiiiiins 110
Working with Tl Language Localization Applications.................... 112
Entering and Exiting an Application Properly............cccccccccieiiinnnnn 113
SEANG-AIONEiiiiiiiiiiiiiiii e 113
SEArt-UP COE.....ccoiiiiiiiieiee 113

EXIT COUR ...ttt a e e e e e e e e e e e e e e 114
Stand-alone with Put Away Notification............ccccccccevniiiiiiiiiiininnnn) 115
StArt-UP COAE...uuiiii i) 116

PUL AWAY COUE ...ttt e e e e e e e e e e eaeee) 118

Chapter 3: Application Development Process

Programming LaYerccoooeuiiiiiiiieeeeees e 120
TI-BASIC Programscccoiiieeiiiirieee e e e 120
ASM PrOgramS.ccuuuiiiiiiiis e e e e e e e e et e e eeean) 120
APPIICALIONS. ... 121
ASM versus ApPLlICAtIONScoiiii i 121

iv Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

Development Systemcoouiviviiiiiiiiei e 121
Using the Simulator System — Requirements for
Getting Started........cooo e 121
Creating an Application for Debugging — One-Page
anNd MUItI-Page APPS...cooeieiiiii e e e e e e eaaaanns 122
A Brief Overview of Certificates and Application Signing.............. 122
Creating Applications that Fit On One Pagecccceeeeeeeevveennnnn 122
The Hello APPHCALIONuviiiiiiiiiiiieieeeee e 123
ACCESSING SYSLEM RESOUICES ...uvvviiiiieiieiieeeeeeeee e 123
Application Headers ..o 123
Header Creation ... 123
Calling System ROULINESuuiiiiiiiiiiiiiiieeeee e 123
Accessing System Variablesccccvvviiiiiiiiii e, 123
Defining @ StriNg........ooooiiiiei e 124
Erasing the SCreen.........ooooviiiiii i 124
Printing Text to the SCreenccccciiiiiiiiiieee e 124
Copying the StHNG.......eiiiii e, 124
System RAM REQISIEIScovviiiiiiiiiiiiiiiiieeeeeeeee e, 124
Reading @ KeY Press........oovviiiiiiiii e eeeeaneed 125
Exiting an AppliCatioNooooiiiiiiiiii e 125
Creating a Multiple Page Applicationcccooeevviviiiiiiiiieeeeenenn, 125
Branch Table ENtriesS. ... 125
Branch Table Placement.........ccccooooiiiiiiiiiiiiciiieeeeeeeeee e 126
Branch Table Equate File...........oooviiiiiiiiiiiieeeee 126
Making Off-Page Calls and JUMPS.........cccoooiviiiiiiiiiiiieeee i) 126
Creating a Zilog Developer Studio Project..................... 127
Creating the Projectuuviiiiiie e 127
Adding Files to the Projectcccoviiiiiiiiiieeeeeeeee 127
Project SettiNGS.....ccoviiiecee e 127
Building the Application............oooooiiiiiiie 128
Loading the Application into the Simulator.............cccccccceeeeeeeeeen. 129
Debugging the AppliCationccccooooii e 131
Preparing an Application for Site Testing............cooevviieiiiieeereeennn, 134
Signing the Application ... 135
Downloading the APPcccoiiieeicee e 135
Preparing for Public Releaseccoo 135

TI-83 Plus Developer Guide Initial Release October 29,1999 \'

Table of Contents (cont.)

Chapter 4. Development Tools

Development Architecture............cccoeevevviii e, 136
Z80 Development System........ccoovvviiiiiiiiiiieeeiie e 136
INStallatioNo 136
T1 Software Simulator and Debuggerccccceevevevnnnnnee. 136
(oo 11T 1] o RSO 136
INStAlAtiON ..o 137
Getting Started.........oooiiiiiiiiiiiiiieii e 137
BreakpOointSouiiii e 141
TraCE OPLIONS ... 141
CPU ViIEeW WINUOWovviiiiiiiiiiiiiiiiiiiiiiesssssss s e e e s e aeeeaeeeeas 142
Disassembly View WINAOWuuuiiiiiiiiiiiiiisseeee e 143
Flash View WINAOW...........coooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieisicivienieneennees 144
RAM VIEW WINAOW.......ouiiiiiiiiieeeiee et e e 144
Memory Map WINAOWcoovieeiiiiiiiiiic e 145
Calculator Simulator WiNAOWccovvvviiiiiinneeeeeieiiies e 145
Trace LOG WINAOWcoiieiiiiiiiiee e 146
Loading Applications, Operating System, and RAM Files............. 148
Terminating @ SESSIONcvuuiiiiii e 150
Support in Writing APPlCAtIONSuueeiiiiie e 150
GLOS S ARY e 151
Appendix A — System ROULINES..........ccccevieiiiiieiiie e, 156
DISPIAY ... 157
Bit_VertSPplt... ..o 159
(04 T=Tod 145y o] 111 F= 1o PSRRI 160
(O [T T = L0 1 PR 161
L4 X I L 162
CIFLCDFUIL ... e e 163
CIrOP 2SS e 164
L | 2o o 165
CIFSCINFUIL ... a e e e e e e e e e e e e e e 166
(O [(7 1 [SN 167
DISPDONE ... e e e e aaann) 168
D1 o) PR 169
DiSPlaYIMAQgE ...uniie e e 170

Vi Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

DISPOP LA L. ettt aaaaaaaaaaae] 172
EraseEOL ..o 173
FOMMBASE ... e e 174
FOrMDCPIX. .ot e e e e e enenn) 176
FOMMEREAL........cooii e 178
FOrMREAI ... e 179
[0 F=To | =1 (=1 o [P 180
0T Vo IS o] o | AP UPPPPPRRRI 181
OULPULEXE ..ot e e e s 182
PULC 183
PULIMAP ..t 184
P UL S .ttt ar e e e e aaaas 185
PULS L —————————————— 187
PULTOKSIIING .ot eeeaaane) 189
RESIOIEDISP ..ot 190
RUNINAICOR ...t e 191
RUNINAICON ... e et eeeeaan) 192
SAVEDISP euuiiiii i e a e 193
SEINOIMM_VAIS ... ittt e e e e 194
SFONE LN e 195
SSHINGLENGIN ...ttt 196
RV U 111 =T USSP USSR 197
VP ULS . Lottt e 198
VPUESN L.ttt et e e e et e aaaaaaaaaaaaaaaaaens 200
o | P 202
CIOSEEdItBUINORcccciiiiiiiie e e e 203
CUISOIO T e e 204
L1 1] 2570] (@ ¢ [P 205
D153 o =1 PP 206
)Y 0151] T TSP 207
B O e 208
oy 0810 0 T= o | PP 209
ErrBadGUESS .. .covii et e e e e eaaan) 210
EFTBIrEAK.....ccciiieeeiici e 211
[2 1 ORI 212
ErfD_OPL_LE_ O 213
ErrD_OPINOL R oo 214
ErfD_OPLNOTPOS. .. ccciiii i e e e 215
ErrD_OPINOtPOSING. ... 216

TI-83 Plus Developer Guide Initial Release October 29,1999 Vii

Table of Contents (cont.)

ErrDAtATYPE cooieieiiiie et e e e ennne] 217
] g T=T 0 1= [o USSP 218
ErrDIMMISMALCRccoeei e 219
EFTDIVBYO.....ccoiiiiiiii i e e e e e e e e aaaaanans] 220
ErrDOMAIN. ... e e 221
ErINCreMENTo 222
ErrINValid........coooi e 223
EFTIIErationSvvvii i) 224
ErrLinkXmMit ...e e e aaan) 225
EITMEMOIY ..o e 226
ErfNON_REAI ...t 227
ETNONREALcuiii i 228
ErrNOtENOUGNMEM .o 229
ErrOVEIIOW ..o e 230
ErrSignCRangeooooviiiiiiiiii 231
ErrSingularMat..........ooooiiiiiiii s 232
£ = | 233
ErrStatPIOt ..o 234
EFTSYNTAX ..ot 235
ErrTolToOoSmMall ..o e, 236
ErrUndefined.........ooiiiii e 237
]l (o 238
JEITOINO Lo e 239
Floating Point Stackcoovviiiiiiie e 240
AlIOCFPS L. 241
AIOCFPS ... e 242
CPYSLACK ...ttt 243

CpyO1ToFPST, CpyOl1lToFPS1, CpyOlToFPS2, CpyOl1ToFPSS3,
CpyO1ToFPS4, CpyO1ToFPS5, CpyO1ToFPS6, CpyOl1ToFPS7,
CpyO2ToFPST, CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3,
CpyO2ToFPS4, CpyO3ToFPST, CpyO3ToFPS1, CpyO3ToFPS2,
CpyO5ToFPS1, CpyO5ToFPS3, CpyO6ToFPST, CpyO6ToFPS2....244

CpyTolFPST, CpyTolFPS1, CpyTolFPS2, CpyTolFPS3,
CpyTolFPS4, CpyTolFPS5, CpyTolFPS6, CpyTolFPS7,
CpyTolFPS8, CpyTolFPS9, CpyTolFPS10, CpyTolFPS11,
CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2, CpyTo2FPS3,
CpyTo2FPS4, CpyTo2FPS5, CpyTo2FPS6, CpyTo2FPS7,
CpyTo2FPS8, CpyTo3FPST, CpyTo3FPS1, CpyTo3FPS2,
CpyTo4FPST, CpyTo5FPST, CpyTo6FPST, CpyTo6FPS2,
CPYTOBFPS3S ... e e 245

COYTOFPST oottt e e r st e e er s s e 246

viii Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

CPYTOFPSL ..ottt e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaen) 247
CPYTOFPS2 .. e e 248
CPYTOFPS3 ittt e e et e et e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaen) 249
(00} V2 015 = U QU 250
PopOP1, PopOP3, POPOPSccooiiiiiiiiiiici e, 251
POPREAI ..o 252
PopRealO1, PopRealO2, PopRealO3,
PopRealO4, PopRealO5, POpRealO6...........coeveveviiiiiiiiiiiiiii 253
PushOP1, PushOP3, PUShOPSccooiiiii e, 254
PUShRealccuiiii 255
PushRealO1, PushRealO2, PushRealO3,
PushRealO4, PushRealO5, PUShRealOB..........cc.ovveeiiiiiiiiieieeeeann) 256
Graphing and Drawingcooouiiiiiiiiii 257
1| o T 259
BUTCIT ettt ataaaaaaaaaaas 260
BUTC DY et 261
L o1 4 2 o 262
(O[T T = L= ox ST 264
L I = P 265
CLINES .. e 267
CIrGIaPNRET ... 269
(O =0 | T 270
CPOINIS. .. ———— 272
(D= 1 (I = RSP 274
D= 4 d | PSPPI 276
ISP ittt ittt e —————— 278
D] = 1 O] (o PUPRUUPPRPN 279
DrawCmd........couiiiiiei e e 281
DrawWRECIBOIAE!coeviiieiiee e e 282
DrawRectBorderClear..........ooovviiiiiiii e 283
EraseReECtBOIdEruiiiiiiiii e 284
FIIRECT. .. e e e e e eeeans 285
FIlIRECIPAIEIN c.vue e e e 287
(€] ¢ 510 { O PP PPPTUOTPRR 289
GIBUTCPY ettt 290
L] 1] [| o 291
HOMZCMA ..o 292
1270 10 T PP 293
IBOUNASFUIL....oueni e e e e e e 294

TI-83 Plus Developer Guide Initial Release October 29,1999 iX

Table of Contents (cont.)

T 295
11704 1 o I 297
INVEIMTRECT ..cee e e e 298
1@ 115 P 299
IPOINT e e ar e an 300
LINECMA ... e 302
PSPPI . 304
PIXEITESE ... e 305
071 01 (4 1 o [N 306
POINTON ... e 308
RGP e 309
SELAIIPIOLS ... 310
SEFUNCM ... 311
SEIPAIM ... 312
SEIPOIM ..o 313
SEESEUM ..o 314
SetThIGraphDraWuuuuiiiiiiiiiiiiiiiiiie e, 315
TaANLNF 316
UCLINES .t e e e e e et eeeeenan) 317
(0T o1 T =T 04 1 Lo O UPPPPPRRRI 318
V=15 (01 1 o F PO PPUPRRPPNt 319
VIOWHLDE ... 320
D110] ISR 321
D10 PO RUPPPRRS 322
4170] ISP 323
4 201 = o o] 324
74 21 S USPP 325
ZIMINt o e 326
4 0 0] o (> S 327
A 1 DT o [N =T PP 328
A 1 11 = 1T 329
ZIMTIIG ceeeeeeeeee e 330
4 2 010 331
Z00DEfaUlt ...) 332
INTEITUPT. ... e 333
DIVHLBYZLO ...oeiiiiiei et e e e et e e e e e e e e eeaanne) 334
DIVHL BY A . et araaee) 335

X Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

S 336
APPGELCAIC ... 337
APPGEICDL ... 338
ST o3 K11 = (PPN 339
RECLSIBYLIENC ... e 340
Loy Y Y (= O L 341
SENUABYLE ... 342

(=Y 0T = T o R 343
APASEIUPD -t a e e e e e eas 344
CanAIPNINS ... 345
GEECSC i —————————— 346
GO K Y L ittt 349

S P 350
o | 351
AAIMEIR ... e e et it e e e e e e e e e e e e e e e e aaaaaaaaaaas 352
(0707217 51 o IS 353
CONVLCTOL <.t e e e et aeeed 354
(0] 17 R I o] I o P 355
DEILISEEL ... aaee) 356
Find_Parse FOrmMuUIA..........ccoooviiiiiiiiii e 357
GELLTOOPL. ...t 358
INCLSISIZE ..ot e e e e e e eeans 359
L ESY=] 1 £ S 361
P UL T 0L et a e e e e e e aees 363

MALN L. 364
ADSOTLOZ2CP wevvvviiiiiiiiiiiiiiiiiiiiieiiee ettt e ee e e et e aaaann] 368
ADSOLIPADSO2.... ..ot eeee) 369
A0S i 370
ACOSH oot a e e e e aaaaaa e 371
ACOSRAA ... ———— 372
ANGIE e a e e e e 373
AASIN Lo ————- 374
ASINH. et e e e e e e e e e e e e e e aaaaaaaaaaan 375
ASINRAA. ...ttt a e 376
N 1= 1 377
ATANZ Lottt ettt e e e e e e e e e e e 378
N = 1 124 8- T [379
ATANH. e 380
N = 1 - Lo 1 381

TI-83 Plus Developer Guide Initial Release October 29,1999 Xi

Table of Contents (cont.)

CADS s 382
CAAA....co 383
OV i 384
CDIVBYREAL......cceiiiiiiiie et 385
CELOX oo 386
(O = (o TPUPPPPRPRN 387
L1131 o | ST PRRPPPRRI 388
L4 141 | PR 389
O 10 o [o R 390
CKOPLCO...cciiiiiiiiiiieeeeeeee e 391
CKROPLCPIX 1ttt ettt a e aaaaaaaaaaaea) 392
CKOPLFPO. ..ottt 393
CKOPLPOS ..ottt 394
CKOPLREAI.....cuiiiiiiiiiiiiiiiiiiieeeeeeeeeteeeee ettt a e e e e e e e e 395
CKOPZ2FPO......coiiiieiiiiieieeeeeeeeeeee ettt a e 396
CKOPZ2POS ...ttt 397
CKOPZ2REAI.....ccuiiiiiiiiiiiiiiiiiiiieeieeeeee ettt a e aaaaa e 398
CKPOSINE .. 399
(0874 Z=1 1o | N[¢ o RO 400
LN 401
(61 1o o IR PPN PPUPPPPRPRTR 402
(01 | I o TS UUUPPRUPPPRN 403
CITOPLS. ..o 404
CMIBYREAIcuiiiiiiiiiiiiiiiiiieieeeeeeeeeee ettt ettt e e e e e e e e e e e e e e e e e e e aaaaaaaaen) 405
O3 T PRSPPI 406
(0] o] [USEEPRPTT 407
COPLSEIO. ...ttt 408
0 ittt e et e e e e et e eeaan) 409
COSH . e 410
CPOPLOP2 ...ttt 411
CPOPAOP3 ...t 412
CRECIP ¢ttt 413
CSOROOT ...e i 414
(O80T o [U= T PP 415
CSUD 416
(O = o) 417
LG I U] [P PPPPTTTTT 418
O o PR 419
(094010 A 2P 420

Xii Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

[(0 421
1T ol @ 2 b o PSPPSR 422
DT OR et rt ittt aa ettt a et aaaaaaaaaaaan 423
[0) PP PPPPPPPPPPP 424
EXPTOHEX .ot e e eeeen | 425
Factorial........oooviiiiiii i 426
Ao o PSPPI 427
I PP PP 428
F P IMUI L.t rrrrtaaaaaaaaaaaas 429
[o =T o TSP 430
FPSQUAIE... ..ot 431
P S U e e e e aaaas 432
FrOIC e 433
HLTIMES <. e et s e e e e e eeeens 434
L I 01 R 435
0 SRR 436
1o | G PSPPI 437
INVOP LS L.ttt e e e e e e eeeees 438
INVOPLSC ... e e 439
INVO P 2SS ..ttt e e e e e e e eeeees 440
IV SUD . e e 441
0 442
0T o) PP PRI 443
1Y = SRS 444
o USSP 445
MINUS L .o e e e e e e e 446
(O] N q o} [0] =T o PRSP 447

OP1Set0, OP1Setl, OP1Set2, OP1Set3, OP1Set4,
OP2Set0, OP2Setl, OP2Set2, OP2Set3, OP2Set4,
OP2Set5, OP2Set60, OP3Set0, OP3Setl, OP3Set?2,

OP4Set0, OP4Setl, OP5SEt0 ...ccooieeeiiieeeeeeeeee e 448
OP2SEL8 ... 449
OP2SEEA ... 450
PIUS L. e ———————— 451
PROR e e 452
RANAINIL ... e 453
= 1 o (o] o o TSR 454
RINBIMIE. e 455
RNAGUANToenicieeie e et e e eees 456
] 0 P 457

TI-83 Plus Developer Guide Initial Release October 29,1999 xiii

Table of Contents (cont.)

0] U o [P 458
L e 459
R OP e 460
]| PSPPI 461
SINCOSRAU.......i i e e e 462
SINMH e 463
SINHCOSH ... e eean) 464
SOROOT. .t 465
1= T 466
TANH e 467
=, 468
ThetaNaAME ... e 469
I L 7P 470
TIMESPES e 471
TNAIMI L 472
LI L = TP 473
I 5 L 474
XN BB e e 475
XROOTY i 476
YN AN . 477
2 K0), GO SUPRRPRRPN 478
ZEIOLOBD ... e 479
ZEIOOP L. 480
ZeroOP1, ZeroOP2, ZerOOP3 ... 481
Y1) TR 482
AAIMROW ... e 483
GEIMTOOP ... e 484
PUTTOMAL ...t e e e e e e eaees 485
MEBIMONY .. 486
y N (o U] = U oS 488
(O 01 1T 10 153 Y/ o 1SS URSURPRRRRRRRR 489
(01T T a7 | 491
ClOSEPIOQ ..ttt 492
(0101 01537/ 1.4 1 TSP 493
CreatEOEQU... .o e et e 494
(OF Lo To =Y Y o] 6 LY P 495
CreatECLIST. ..o 496
(01T | (=10 o] b TR 497
CrEALEEQU e 498

Xiv Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

CrEALEPAIN. ... 499
CrRALEPICT ...ttt 500
(O (=T 1 (<] (0T PP PPPTPTPT 501
CreatePrOtPIOgccv e 502
CreateReaAL.o 503
CrEALERLIST ...ttt e e 504
CreateRMat ... 505
(01 1=T= 115 1 Vo N 506
D= 1= S . = P 507
DAtaSIZEAottt eeaaee) 508
DeallOCFPS ... e 509
DeAllOCFPSL ... 510
=] 11 T= o o 511
D= Y PP 513
T LY = 1 AN o SRR 514
DEIVAINOAIC ... e eeeeee 515
EdItPrOg ... 516
ENOUGNMEM .ooiiiii e eeeeens) 517
EXCNO e 518
I T 519
FINAAIPNADN .o 520
FINAAIPNAUD ..., 522
106 VY o] o PP P PP PPPPOPPPPP 524
FINAAPPNUMPAGES ..o 525
FINAAPDDIN ..ttt 526
e TN o 16 J o O ERRTR 527
FINASYM ... 528
e D I =T 0] o1 4 1 USRS 530
FIaShTORAM ... 531
INSEITIMEIM ..ot e et e e 532
0T To [0] T 1 == To =T o U 534
LOAADEINUPAGED.cciiiiiiiiiiiiiiiieeeee e 535
MEIMCHK L. r e e e e e e e 536
PagedGet. ... 537
RCIGDB2.... ..o 538
RCIN Lt e e e e e e et e et et e e e e e aaaaaaaaaaaas 539
RCIVAIrSYM ..o e aaaaenans) 540
R CIX et r ittt aat et a et aaaaaaaaaaaaaan 541
R CIY ettt e e e e e e e e aaaaaaas 542

TI-83 Plus Developer Guide Initial Release October 29,1999 XV

Table of Contents (cont.)

ReAIMMALeiiiii e e e 543
SetUPPAGEAPTI ... 544
SrchVLStDN, SIChVLSIUD cceiiiiiiiiiieeceeee e 545
SIMALEL ..o ———— 546
1] (02N 13PN 547
SEOGDB2...ciieiii e 548
SEON .t aaeeaa 549
SEOOTNET .. —— 550
S O R e 552
SEOSYSTOK vt e e e e e e e e e aaa 553
) (0) PO UUPPPRIRS 554
) (0 1 I 1= = L 555
) 10), G PO ORI 556
] (0) A UUPPPRS 557
= 1> PP 558
BINOPEXEC ..cvviviiii i ittt e s e e e e et s e e e e e e aeaenene) 559
Y= (Y o 561
FOUMEXEC ..ttt e 563
ParSEIND e 565
RCISYSTOK....ceiitiiii i e e e e e e e e eaaeee) 567
TRIEEEXEC . ccvveieiiee e e eaan) 568
L@ o - o PPR 570
Yo = o P 572
FOrCEFUIISCIEEN.. ... e, 573
Y = L] 1o PR 574
DEIRES ... e ——————— 575
L0 Y = T S 576
o] =1 - 1 RPN 577
(011132 USSP 578
y N] NN = T T U 580
(00 8170 o100 N 581
L0 o | I 582
DISabBICADT. ..o 583
ENADICADT ... e 584
EOPINOIREAI ... e 585
EQU_OF NEWEQUcociiieeiei et e e et e e e e e 586
GetBASEVE ... 587
(7] o] =Y o U 588
JFOrceCmANOCRAr e e, 589

XVi Initial Release October 29,1999 TI-83 Plus Developer Guide

Table of Contents (cont.)

JFOrceGraphKey ... 590
JFOrceGraphNOKEYoovviiiiiii e e, 591
1T 0 L == T 592
MBIMSEL ... e 593
Mov7B, Mov8B, Mov9B, Mov10B, MOV18B...........cccccvvvviriiiiieeeeenn. 594
MOVOOPTLOP2... .ottt eeeeeeeeeeeeeeees 595
MOVOOP2CD ..t s e e e e e e e e eaaeeees 596
MOVOTOOP ...ttt et e 597
MOVOTOOPot n e eeees 598
MOVFTOPL L. e e e e e e e eaeeeeees 599

OP1EXxOP2, OP1EXOP3, OP1EXxOP4, OP1EXOPS5,
OP1ExOP6, OP2EXOP4, OP2EXOP5, OP2EXOP6,
OPSEXOPG ... 600

OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOPS,
OP1ToOP6, OP2ToOP1, OP2ToOP3, OP2ToOP4,
OP2ToOP5, OP2ToOP6, OP3ToOP1, OP3ToOP2,
OP3ToOP4, OP3ToOP5, OP4ToOP1, OP4ToOP2,
OP4ToOP3, OP4ToOP5, OP4ToOP6, OP5T0oOP1,
OP5ToOP2, OP5ToOP3, OP5ToOP4, OP5ToOP6,

OP6TOOP1, OP6TOOP2, OPETOOPS...........oeoververiessesriessenien 601

POSNOOINTeeeee e et eeeees 602

RCIANS . 603

RelOAdAPPENIIYVECS ... 604

SEIXXOPL ..o 605

SEIXXOPZ ..o 606

SEIXXXXOPZ......ooovocvoeeeeseesesis s 607

SEORANA ... e —————— 608

0] (0] o) 609

SULENGLN o) 610

MISCEIIANEOUS ..o 611

CONVOPL ..ot 612
Appendix B — Tl -83 Plus “Large” Character Fonts............. 613
Appendix C — Tl -83 Plus “Small” Character Fonts............. 620
Reference List — System ROULINES............cceiviiiiiiiiiiieeennne, 628

TI-83 Plus Developer Guide Initial Release October 29,1999 XVi

Figures

Fig. 2.1: TI-83 PIUS AICNItECIUI... ... e e e e e e e s e e e aaaeeenes 3
Fig. 2.3: Z80 MEIMOIY SPACEuuuiiiiiiiiiiiiiitieeeee ettt ettt ettt ettt ettt ettt et e e e e e e e e e e aeeeaaaaaaaaaaaaaaaaaaaaaaaaaaes 4
Fig. 2.2: TIF83 PIUS RAM ...t e e e e et e e e e e e e e e e e aee s 5
Fig. 2.4: TI-83 PIUS RAM STITUCTUIEeeiiiiiiiiiieeieeeeeeeee ettt 5
Fig. 2.5: TI-83 Plus Flash ROM StrUCIUIEcccoeeiiiiieiiiee e e e e e e eeeans 8
Fig. 2.6: SyMbDOI Table SITUCTUIE ...ttt e e e e e e e e e e e e e e aaeeeees 51
Fig. 2.7: TI-83 PIUS SYSEM RAMeuiii i e e e e e e e e 56
Fig. 2.8: Calculator SCAN COUEcooiiie ittt e e ettt e e et et e e eeeeeeeeeeaaaeen) 64
Fig. 2.9: Home Screen Display Mappingc.oooeeiiiiiiiiiiiiiiiss e e e e e e eeeeaarneaaans 71
Fig. 2.10: Pen Display MapPingcccooeoouiiiiiiiiiiiiiiiteiibibesseese e e e e e e e et e ea et e e aaaaaaaaeaaaaaaaaaees] 73
Fig. 2.11: ComMMANd VAIUES.......uiiiiiiiiciieeice e e e e e e e e e e e e e e e e e 76
Fig. 2.12: PiX€l COOTAINALIES ...t e e et e e e e e et e e e e e e eeee e, 83
Fig. 2.13: Graph WINDOW SEHNGcooviiiiiiiiiiii et e et e e e e e e e 86
FI. 2,047 EITOT FIOW. ...ttt 99
Fig. 2.15: TI-83 PIUS SYStEM RAM ... e e e e 109
Fig. 2.16: CONIOI FIOW ...ttt ettt e 113
Fig. 2.17: EVENE SEOUENCEotttiiie e e eee et e et e e e ettt a s e e e e e e e e e e e bbb a e s e e aaaeeesesbana s eaaeaaeeees 114
Fig. 2.18: Application LOAUEN PrOCESSuuuuuiiiiiiiiiiiiiiiiiieeeeeee e e e e e e e e e e e s s eeeeeees 116
Fig. 3.1: Application Development FIOWcoooiiiiiiiiiiie e 119
XViil Initial Release October 29,1999 TI1-83 Plus Developer Guide

Tables

Table 2.1: SYSIEM FIAGS ...cooveiiiiiieieeee e 12
BRI o] ST @] e =T o 1] (=T £ USRS 16
Table 2.3: Transfer one OP register to another (11 byte Operation)cccccvveveeeeeiiiiieieeeeennn, 16
Table 2.4: Exchange one OP register with another (11 byte operation)cccoevvvvvceieennnn. 17
Table 2.5: Load a floating-point value into an OP register (9 byte operation)ccccevvveeeeenn. 17
Table 2.6: Miscellaneous floating-point utility routines in OP registers...........ccccceeeeeiiiiiiiininennne, 17
Table 2.7: Set an OP register to all zeros (11 byte OPeration).............eeeeeeeeeeiiiiiiieieeeeeennininaannns 17
Table 2.8: Variable Name, RAM Equate, and SysTok Value...............oovvviiiiiiiii e, 20
Table 2.9: Floating-Point NUMBEr FOIMALuuiiiiiiiiiiiiiiiiieieee e 21
Table 2.10: Variable Name FOIMMALuuuuiiiiiiiiiiiiiiiiiiieeieeeeeee et 26
Table 2.11: Format of Archive Stored Variables.............ueiiiiiiiiiiiieece e, 44
Table 2.12: Format of Archive Stored Variables............uuuuueiiiiiiiiiiiiiieee e 47
Table 2.13: Program, APPVar, GIOUPe e i eeeeieieieeeieteeeeeee et e e e e e e e e e e e e e e e e e e aa e e s s s s 52
QLI Lo L= S I] (PP 52
Table 2.15: Real, Cplx, Mat, EQU, GDB, PiCl........ccuiiiiiiiiiiiiiieie s 52
Table 2.16: FOrmula EXamPIEoii i 54
Table 2.17: Floating-Point Basic Math FUNCLIONSccooviiiiiiiiiii e 100
Table 2.18: Trigonometric and Hyperbolic FUNCLIONScccceeiiiiiiiiiiiicee e 101
Table 2.19: Floating-Point Power and Logarithmic Math FUNCLIONS.............ccoooviiiiiiiiiiiiiee, 101
Table 2.20: Floating-Point Miscellaneous Math FUNCLIONS.............cccoevviiiiiii e 102
Table 2.21: Complex Math Basic Math FUNCLIONSccooiiiiiiiiiiiicee e 103
Table 2.22: Complex Math Power and Logarithmic Math Functions................ccccoevvviiiienennnn. 104
Table 2.23: Complex Math Miscellaneous Math FUNCLIONS..............ccooiviiiiiiiiiiiiiiie e 104
Table 2.24: Temporary Variables EXample ... 108
Table 2.25: Language Tableuueiiiiiiie 112
TI-83 Plus Developer Guide Initial Release October 29,1999 XiX

Introduction

TI1-83 PLUS DEVELOPER GUIDE

This guide contains information necessary to develop applications for the TI-83 Plus
calculator. It addresses basic environmental specifics and development guidelines. This
guide covers TI-83 Plus calculator specific information, processes, and development
tools.

The TI-83 Plus Developer Guide is one of a set of documents supporting the TI-83 Plus
calculator. The set includes:

TI-83 Plus Graphing Calculator Guidebook — Describes how to use the calculator
(provided with the TI-83 Plus calculator).

TI-83 Plus Tutorial — Provides examples that introduce the developer to application
creation.

TI-83 Plus User Interface Guide — Provides information on the design and
construction of the user interface.

To access these guides visit our web site.

Conventions Used in this Guide

The following conventions were adopted for this guide to help make the material easier
to read.

Program text: All of the program examples are in a non-proportional font that can be
distinguished from the guide text.

LD HL,L1name
B_CALL Mov9ToOP1 : OP1 =list L1 name
B_CALL FindSym ; look up list variable in OP1

Syntax: Program instructions (commands and directives) are in all upper case letters.

Example:

B_CALL routine

Optional parameters: These parameters are enclosed in square brackets. Part of a
program instruction may be in italics to describe the type of information.

Example:

[label][:] operation [operands] [; comment]

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 1: Introduction

Program layout: The program statements appear in columns.

Example:
ThisIsALabel:
LD A5
B_CALL SystemRoutine ; call to a system routine
DEC A
JR NZ,ThislsALabel
RET

Purpose of this Guide

The types of programs that can be created on the TI-83 Plus calculator include
RAM-based TI-BASIC programs, RAM-based assembly programs, and

Flash ROM-based applications. This guide addresses Flash ROM-based application
development and RAM-based assembly programs.

Structure of this Guide

Chapter 2 provides an in-depth view of the TI-83 Plus physical and logical memory
structures, and the various drivers, tools, and utilities available to the developer.

Chapter 3 presents several processes including the application development

process, the signature process, the testing process, and the release/distribution
process.

» Chapter 4 provides a view of the various development tools.

TI-83 Plus Developer Guide Initial Release October 29, 1999

T1-83 Plus Specific
Information

ARCHITECTURE

Fig. 2.1 represents the TI-83 Plus architecture, which is composed of several layers and
elements.

Programming

Tools and Utilities

Drivers

Hardware

Fig. 2.1: TI-83 Plus Architecture

The Hardware layer contains the functional components of the unit — the Z80
processor, Random Access Memory (RAM), Flash ROM (also called Flash), Read Only
Memory (ROM), and TI-BASIC (not included in this guide).

The Drivers layer contains assembly language-controlled functions such as the keypad,
battery, display, and input/output.

The Tools and Utilities layer contains the elements that provide text, drawing tools,
and utility routines.

The Programming layer contains the user interface — screen, keyboard, and the basic
unit functionality. In addition, it provides the capability to load TI-BASIC programs
(keystroke), assembly programs that execute in RAM, and application programs that
execute in Flash ROM.

This chapter explains the Hardware layer, Drivers layer, and Tools and Utilities layer.
Chapter 3 explains the Programming layer.

TI-83 Plus Developer Guide Initial Release October 29, 1999

4 Chapter 2: T1 -83 Plus Specific Information

HARDWARE LAYER

Loading and debugging an application requires a general understanding of the memory
layout of the calculator.

Other manuals and guides cover TI-83 Plus operation including keys, screens, menus,
etc. This discussion covers the TI-83 Plus internal hardware components — Zilog Z80™
CPU, RAM, and Flash ROM.

Z80 CPU and Memory

The TI-83 Plus uses a Z80 processor with a 64K byte logical address space. To provide
more than 64K bytes of physical RAM, this logical memory space is divided into four
16K byte pages (see Fig. 2.3). Physical memory is also divided into two 16K byte pages
(see Fig. 2.3), and a physical page is mapped into each logical page as it is needed.

There are two types of physical memory in the calculator — Z80 RAM and Flash ROM.
The following sections address the composition, structure, and uses of these memory

types.
e 780 Logical Memory Space

The Z80 logical memory size is 64K bytes, which is divided into four 16K byte
pages — 0000h to 3FFFh, 4000h to 7FFFh, 8000h to BFFFh, and CO00h to FFFFh.
A physical memory page is mapped into each logical page.

0000h
4000h 16K Always Flash ROM Page O 3FEEN
8000h 16K RAM Page 0,1 or Flash ROM Pages 0-31 7EEEN

16K RAM Page 0,1 or Flash ROM Pages 0-31
CO000h BFFFh

16K Always RAM Page 0

FFFFh
Fig. 2.3: Z80 Memory Space

The 16K byte address space from 0000h to 3FFFh is ROM page 0 from the Flash
ROM. It is always present.

The 16K byte address space from 4000h to 7FFFh is used for swapping a 16K byte
ROM page from the Flash ROM. This allows the TI-83 Plus system to extend
beyond its 64K byte physical addressing capabilities.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information

» 780 Physical RAM Structure

TI1-83 Plus physical RAM consists of 32K bytes starting at address 8000h.

8000h

16K

Page 2

BFFFh

C000h
16K

Page 3

FFFFh

Fig. 2.2: TI-83 Plus RAM

Z80 RAM Structure

The TI-83 Plus has 32K bytes of RAM. The system code partitions the RAM into a
number of areas, which it uses to maintain different types of information. Applications
that need RAM must reuse some of the RAM not currently in use by the system code.
They must request an allocation from the system code User RAM area. Fig. 2.4 shows

how RAM is partitioned.

System RAM
(Fixed Size)

User RAM
(Grows Up)

Temporary RAM
(Grows Up)

Floating Point Stack
(Grows Up)

Free RAM

Operator Stack
(Grows Down)

Symbol Table
(Grows Down)

Hardware Stack
(Fixed Size)

Addr
8000h
Legend
Fixed Area
Dynamic Area
FFFFh

Fig. 2.4: TI-83 Plus RAM Structure

TI-83 Plus Developer Guide

Initial Release October 29, 1999

6 Chapter 2: T1 -83 Plus Specific Information

Fig. 2.4 shows the addresses of Z80 logical address space. RAM is always mapped into
the 32K space beginning at logical address from 8000h to FFFFh. The areas (System
RAM and Hardware Stack) at each end of RAM are fixed size. All other areas are
dynamic. The positions of the areas in RAM with respect to each other never changes
and never overlaps; however, their sizes grow and shrink and boundaries move as the
calculator operates. The area labeled Free RAM is a leftover area. As the other areas
grow, they push into the Free RAM area making it smaller. As the other areas shrink,
the Free RAM area gets larger.

Following is a brief overview of each of these areas in RAM.

System RAM

This area contains system preallocated RAM structures.

» System Flags (Modes, Indicators)

» System Variables (for example, Xmin, Ymin...)
* OP1 through OP6 RAM Registers

* Memory Pointers

» Safe RAM Locations for Applications Use

» State Monitor Control RAM

e Graph Backup Screen — bit image

» Utility Backup Screens (two) — bit image

e Text Backup Screen

User RAM

Variables created by the calculator user are stored in User RAM. Each variable stored in
User RAM has a Symbol Table entry associated with it.

Temporary RAM

This area is used during equation parsing and execution. It contains the data for the
temporary variables that are created during parser execution. Some applications may
need to perform housekeeping of this area if they invoke the equation parser and if
temporary variables are returned as a result.

Floating Point Stack

This area is used during equation parsing and execution. It provides temporary storage
outside the User RAM area.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information 7

Free RAM

This is the RAM that is currently not in use. The arrows in Fig. 2.4 show that the
structures below and above Free RAM grow toward it.

Note: Applications should never use this area. Information about which RAM areas are available for
applications will be provided, as well as how to create variables for long-term storage of data.

Operator Stack

This area of RAM is used by the system code for math expression evaluation and
equation parsing (execution). No detailed description of this RAM area is provided since
applications do not use the Operator Stack.

Symbol Table

This area of RAM is used to keep track of all of the variables, resident in both RAM and
Flash ROM. The names, data types, pointers to the data, and where the variables reside
in RAM or in Flash ROM (archived) are stored in the Symbol Table.

Hardware Stack

This is the area to which the Z80 Stack Pointers (SP) register points. This stack area is
400 bytes. The Hardware Stack starts at address FFFFh and it grows from high to low
memory.

There are no safeguards against overflowing the stack and corrupting other RAM areas.
The amount of space allocated for the stack should be sufficient for applications needs.
Applications should avoid the use of recursive routines that can easily and quickly
overflow the Hardware Stack. The Hardware Stack should not be used for saving large
amounts of data. Using the Hardware Stack to save register values upon entry to
routines should not cause problems.

None of the TI-83 Plus system routines use recursion that will overflow the Hardware
Stack.

TI-83 Plus Developer Guide Initial Release October 29, 1999

8 Chapter 2: TI -83 Plus Specific Information

Flash ROM Structure

The TI-83 Plus Flash ROM is composed of 512K bytes divided into 32 pages, each of
which is 16K bytes in size. Fig. 2.5 represents the Flash ROM structure.

00000 Addr Page(s) Size Legend
SWAP and/or User APPS Area
Update System (OS) Area

oS 07 - 04 07 -04 64K
SWAP/USER DATA 0B -08 11-08 64K
SWAP/USER APPS/DATA OF —0C 15-12 64K
USER APPS/DATA 13-10 19-16 64 K
USER APPS/DATA 15-14 21-20 32K

1B-18 27-24 64K

1b-1cC 29 -28 32K
1E 30 16K
1F 31 16K

Fig. 2.5: TI-83 Plus Flash ROM Structure

7FFFF

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

The explanations of some Flash ROM areas below are for informational purposes only.

Boot (Code) Area

This area contains the following unalterable items.

» Boot-strap code

» System initialization code
» Software validation routine
* Program download routine
» Software product ID

* Product code update loader

Certification Area

This area contains program authentication information.

» Calculator serial number

» Unit certificate public key

» Date-stamp public key

» Date-stamp certificate

» Unit certificate and license status

e Group certificates

Operating System (OS) Area

This area contains the operating system of the calculator — math, display, keyboard,

1/0, etc. routines.

Certificate List Area

This area contains a list of unit certificates for the specific calculator.

User APPS (Calculator Software Applications)/Data Area

This area (160K bytes of available space) is shared by applications and variables

archived by the user for long-term storage.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

10 Chapter 2: TI -83 Plus Specific Information

Swap Area/User APPS/Data Area

This area is dynamically allocated for use by the system as needed in the space

indicated in Fig. 2.5.

System Development Environment

All TI-83 Plus applications are developed in Z80 assembly language. Chapter 3 contains
more specific information and examples. This section provides in-depth information
about the use of System RAM, User RAM, Floating Point Stack, etc. (see Fig. 2.4).

System Routines

Entry points for a set of TI-83 Plus system routines are provided in Appendix A. A list of
entry point equated labels is provided in the file, TI83plus.inc. Later in this chapter,
source code examples are included with detailed explanations of how to access system

routines.

To access these system routines use the Z80 RST instruction. Two macro-instructions
(macro) are provided for simplification. Each of these macros uses three bytes of code

space.

If your assembler does not support macro calls, substitute:

B_CALL label

with

RST rBR_CALL
DW label

B _JUMP label

with

CALL BRT_JUMPO
DW label

The following section is a detailed explanation of the various RAM areas shown in

Fig. 2.4.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 11

RST Routines

The Z80 reset instruction, RST, can be used in place of B_CALL for some entry points.
Using the RST instruction only takes one byte of ROM space as opposed to three bytes
for a B_CALL. There are five routines set to use this method of access. These were
chosen because of high-frequency use in the operating system.

« RST rMov9ToOP1 used instead of B_CALL Mov9ToOP1
e RST rFindSym used instead of B_CALL FindSym

e RST rPushRealO1 used instead of B _CALL PushRealO1
e RST rOP1ToOP2 used instead of B_CALL OP1ToOP2
e RST rFPAdd used instead of B_CALL FPAdd

Details on these routines can be found in this chapter or in Appendix A.

System RAM Areas

The details about system RAM follow.

System Flags

This area of RAM is used for bit flags. The TI-83 Plus accesses these flags through the
Z80's IY register. The 1Y register is set to the start of this flag area and does not change,
resulting in easy bit manipulation.

Example:

SET trigDeg, (IY+trigFlags) ; set to degree angle mode
trigFlags is the byte offset from the start of the flag area.

Some system flags that an application might use are listed in Table 2.1, along with
information needed to support basic ASM programming on the TI-83 Plus.

The values for these symbols are located in the include file, TI83plus.inc.

TI-83 Plus Developer Guide Initial Release October 29, 1999

12

Chapter 2: T1 -83 Plus Specific Information

Flag Name IY Offset Equate Description omments
trigDeg trigFlags 0 = radian angle mode
1 = degree angle mode
plotLoc plotFlags 0 = write to display and buffer Determines whether the graph line
1 = write to display only and point routines draw to the
display or to the graph backup
buffer, plotSScreen .
plotDisp plotFlags 0 = graph screen not in display
1 = graph in display
grfFuncM grfModeFlags 1 = function graph mode
grfPolarM grfModeFlags 1 = polar graph mode
grfParamM grfModeFlags 1 = parametric graph mode
grfRecurM grfModeFlags 1 = sequence graph mode
graphDraw graphFlags 0 = graph is up to date
1 = graph needs to be updated
grfDot grfDBFlags 0 = graph connected draw mode
1 = graph dot draw mode
grfSimul grfDBFlags 0 = sequential graph draw mode
1 = simultaneous graph draw mode
grfGrid grfDBFlags 0 = graph mode grid off
1 = graph mode grid on
grfPolar grfDBFlags 0 = graph — rectangular coordinates
1 = graph — polar coordinates
grfNoCoord grfDBFlags 0 = graph coordinates off
1 = graph coordinates on
grfNoAxis grfDBFlags 0 = graph draw axis
1 = graph no axis
grfLabel grfDBFlags 0 = graph labels off
1 = graph labels on
textEraseBelow textFlags 1 = erase line below small font when Deals with displaying small variable
writing small font font characters, when set the pixels
below the character displayed are
cleared. See routines VPutMap
and VPutS.
textinverse textFlags 1 = write in reverse video Affects both the normal 5x7 font

and the small variable width font.

Table 2.1: System Flags

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

13

Flag Name lY Offset Equate Description omments
oninterrupt onFlags 1= key interrupt occurred The key is interrupt driven, but
it does not automatically stop
execution. Flag is set by the
interrupt handler when the key
is pressed. An application must poll
(test) this flag to implement the
key press as a break.
statsValid statFlags 1 = stat results are valid
fmtExponent fmtFlags 1 = scientific display mode Resetting signifies NORMAL mode
setting.
fmtEng fmtFlags 1 = engineering display mode Resetting signifies NORMAL mode
setting.
fmtReal fmtFlags 1 = real math mode See Comment 1 below.
fmtRect fmtFlags 1 = rect complex math mode See Comment 1 below.
fmtPolar fmtFlags 1 = polar complex math mode See Comment 1 below.
curAble curFlags 1 = cursor flash enabled
curon curFlags 1 = cursor is showing
curLock curFlags 1 = cursor is locked off
appTextSave appFlags 1 = save characters written in Places a copy of the character,
textShadow normal font only, written to the
display into the textShadow buffer.
appAutoScroll appFlags 1 = auto-scroll text on last line Causes the screen to automatically
scroll when the normal font is
written to the display and goes
beyond the last row of the screen.
indicRun indicFlags 1 = run indicator is enabled Controls the run indicator that is
0 = run indicator is disabled displayed in the upper right corner
of the display. See Run Indicator
section.
comFailed getSendFlg 1 = com failed
0 = com did not fail
apdRunning apdFlags 1 =APD™ s running
0 = APD™ is not running

Table 2.1: System Flags (continued)

Comment 1: Controls the mode setting: REAL a + bi re”8i located on the mode screen.

TI-83 Plus Developer Guide Initial Release October 29, 1999

14

Chapter 2: T1 -83 Plus Specific Information

Flag Name lY Offset Equate Description omments

indicOnly indicFlags 1 = only update run indicator Sets the interrupt handler to update
the run indicator, but not to process
APD, blink the cursor, or scan for
keys. It is useful when executing
I/O link port operations for speed.

shift2nd shiftFlags 1 = second key pressed

shiftAlpha shiftFlags 1 = alpha mode

shifLwrAlpha shiftFlags 1 = lower case, shift alpha set also

shiftALock shiftFlags 1 = alpha lock, shift alpha set also

grfSplit sGrFlags 1 = horizontal graph split mode

vertSplit sGrFlags 1 = vertical graph split mode

textWrite sGrFlags 1 = small font writes to buffer Use when writing small font

0 = small font writes to display characters. Determines if the

character will be written to the
display or to the corresponding
location in the graph backup buffer,
plotSScreen . Useful for building a
screen in RAM and then displaying
it in its entirety at once.

fullScrnDraw apiFlag4 1 = allows draws to use column 95

and row 0

bufferOnly plotFlag3 1 = draw to graph buffer only Causes all of the graph line and
point routines (pixel coordinates as
inputs) to be drawn to the graph
backup buffer instead of to the
display.

fracDrawLFont fontFlags 1 = draw large font in UserPutMap Enables the normal font to be
drawn using the small font
coordinate system. See section on
Display in Appendix A.

customFont fontFlags 1 = draw custom characters Allows an application to have the
small font routines display a font
defined by an application. See
section on Display in Appendix A.

IlwrCaseActive appLwrCaseFlag |1 = enable lower case in GetKey loop | Causes the GetKey routine to

recognize lower case alpha key
presses. When set, the key

sequence [ALPHA] [ALPHA] causes
lower case alpha mode to be set.

Table 2.1: System Flags (continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information

Flag Name lY Offset Equate Description omments

asm_Flagl 0 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 1 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 2 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 3 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl_4 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 5 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 6 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flagl 7 asm_Flagl available for ASM programming See Comment 2 below.
asm_Flag2 0 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_1 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_ 2 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_3 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_4 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2 5 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2_6 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag2 7 asm_Flag2 available for ASM programming See Comment 2 below.
asm_Flag3 0 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 1 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 2 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 3 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3_4 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 5 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 6 asm_Flag3 available for ASM programming See Comment 2 below.
asm_Flag3 7 asm_Flag3 available for ASM programming See Comment 2 below.

Table 2.1: System Flags (continued)
Comment 2: Used by applications to provide easy bit flag implementation. Once an application completes, flag will

most likely be changed by another application. It will not hold its state.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

16 Chapter 2: TI -83 Plus Specific Information

OP1 through OP6 RAM Registers

This area of RAM is used extensively by the TI-83 Plus system routines for such things
as:

» Executing floating-point math

e Passing arguments to and from system routines
» Extracting elements out of lists or matrices

» Executing the parser

» Formatting numbers for display

There are six OP registers allocated — OP1, OP2, OP3, OP4, OP5, and OP6. Each of
these labels are equated in the include file, TI83plus.inc.

Each of these OP registers is 11 bytes in length; they are allocated in contiguous RAM.

OP1 11 bytes
OoP2 11 bytes
OP3 11 bytes
OP4 11 bytes
OP5 11 bytes
OP6 11 bytes

Table 2.2: OP Registers

The size of these registers was determined by the size of the TI-83 Plus floating-point
number format and by the maximum size (nine bytes) of a variable name. The 10th and
11th bytes in each register are used by the floating-point math routines for extra

precision.
Below are the Utility routines that manipulate the OP registers. See Appendix A for
details.
OP1ToOP2 | OP2ToOP1 | OP3ToOP1 | OP4ToOP1 | OP5ToOP1 | OP6ToOP1
OP1ToOP3 | OP2ToOP3 | OP3ToOP2 | OP4ToOP2 | OP5ToOP2 | OP6ToOP2
OP1ToOP4 | OP2ToOP4 | OP3ToOP4 | OP4ToOP3 | OP5ToOP3 | OP6ToOP5
OP1ToOP5 | OP2ToOP5 | OP3ToOP5 | OP4ToOP5 | OP5ToOP4
OP1ToOP6 | OP2ToOP6 OP4ToOP6 | OP5ToOP6

Table 2.3: Transfer one OP register to another (11 byte operation)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

17

OP1ExOP2

OP1ExOP3

OP1ExOP4

OP1ExOP5

OP1ExOP6

OP2ExOP4

OP2ExOP5

OP2EXxOP6

OP5EXxOP6

Table 2.4: Exchange one OP register with another (11 byte operation)

OP1Set0 OP1Set4 OP2Set3 OP2Set8 OP3Set2
OP1Setl OP2Set0 OP2Set4 OP2SetA OP4Set0
OP1Set2 OP2Setl OP2Set5 OP3Set0 OP4Setl
OP1Set3 OP2Set2 OP2Set60 OP3Setl OP5Set0
SetXXOP1 SetXXOP2 SetXXXXO0P2

Table 2.5:; Load a floating-point value into an OP register (9 byte operation)

Ckint CkOdd CkOP1FPO CkOP1Pos CkOP1Real
CkOP2FPO CkOP2Pos CkOP2Real CIrOP1S ClrOP2S
InvOP1S InvOP2S CpOP10P2 ConvOP1

Table 2.6: Miscellaneous floating-point utility routines in OP registers

ZeroOP1

ZeroOP2

ZeroOP3

ZeroOP

Table 2.7: Set an OP register to all zeros (11 byte operation)

The OP registers are also used as inputs and outputs for floating-point and complex

number math. See Floating Point and Complex Math sections.

Safe RAM Locations for Application Use

If the amount of RAM an application needs is not too great, use safe pieces of RAM that
exist in the System RAM area. These are chunks of RAM that are not used by system

routines except under rare circumstances. They are, therefore, available as scratch

RAM for the application.

saveSScreen
(86ECh)

This is 768 bytes used by the system code only if the calculator
automatically powers down (APD). This RAM is safe to use as

long as an APD cannot occur. See the Keyboard and Automatic
Power Down™ (APD™) sections.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

18 Chapter 2: TI -83 Plus Specific Information

statVars This is the start of 531 bytes of RAM used to store statistical
(8A3Ah) results. If you use this area, do not compute statistics in your
ASM program. Make this B_CALL to invalidate statistics, as well.

B_CALL DelRes

appBackUpScreen This is the start of 768 bytes of RAM not used by the system. It is

(9872h) intended for ASM and applications. Its size is large enough to
hold a bit image of the display, but it can be used for whatever
you want.

tempSwapArea This is the start of 323 bytes used only during Flash ROM

(82A5h) loading. If this area is used, avoid archiving variables.

WARNING: The RAM is safe to use only until the application exits. Data in any of these areas of RAM may
be destroyed between successive executions of an application. Therefore, any data that must
remain between executions cannot be kept in these areas. This RAM is only for the variables
that can be discarded when the application exits.

System Variables Area

This area of system RAM consists of preallocated variables needed by much of the
T1-83 Plus built-in functionality. Because they are floating-point numbers these variables
are all nine bytes. Because these variables are always needed, the system always
keeps them around and never changes their addresses.

There are two classes of system variables — those that you can store to and recall
from, and those that are referred to as output only variables because the system
routines can store to them.

System Variables that are Both Input and Output

In general, these values should only be changed by system routines that applications
can call. Modifying these variables directly, rather than modifying them through the
appropriate system routine, could corrupt the state of the system. Most of these system
variables have restrictions on what values are valid to store to them. Using the system
routine to store to them guarantees that the proper checks are made on the values
being stored to them.

System Variable Characteristics

* There are no Symbol Table entries for system variables.

e These variables can be changed by the user, but cannot be deleted or renamed. For
example, you can change Xmax, but you cannot delete it.

* These variables are initialized to a predetermined value upon reset.

» These variables always reside in RAM. For example, it is not possible to archive
Xmin.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 19

Storing and Recalling System Variable Values

Since system variables are located at a fixed location in RAM, an application can access
the contents of a system variable directly. This method is safe only when recalling a
single system variable.

There is also a system routine that copies the contents of a system variable to OP1; the
value in the accumulator determines what system variable is recalled. See SysTok
values in Table 2.8.

RclSysTok Copies the contents of a system variable to OP1.

StoSysTok Stores the contents of OP1, if valid, to a system variable.

Note: An application should not modify the contents of a system variable directly; it should always use
this system routine.

The system variable stored to is determined by the value in the accumulator.

Example: If you want to store -3 in Xmin:

B_CALL OP1Set3 ; Reg OP1 = Floating point 3

B_CALL InvOP1S ; Negate FP number in OP1, OP1 = -3
LD A XMINt ; ACC = Xmin variable token value

B_CALL StoSysTok ; store OP1 to Xmin,

Example: If you want to recall the contents of Xmin to OP1:

LD A, XMINt
B_CALL RclSysTok ; OP1 = contents of Xmin, -3

TI-83 Plus Developer Guide Initial Release October 29, 1999

20

Chapter 2: TI -83 Plus Specific Information

Table 2.8 lists each system variable, its RAM address equate, and the token values
used to access them with the routines above.

Variable Name RAM Equate SysTok Value
Xscl Xscl XSCLt

Yscl Yscl YSCLt

Xmin Xmin XMINt
Xmax Xmax XMAXt
Ymin Ymin YMINt
Ymax Ymax YMAXt

tMin tMin TMINt

tMax tMax TMAXt

Bmin ThetaMin THETMINt
Bmax ThetaMax THETMAXt
PlotStart PlotStart PLOTSTARTt
nMin nMin NMINt

nMax nMax NMAXt
deltaThl ThiStep TBLSTEPt
Tstep Tstep TSTEPt
Bstep ThetaStep THETSTEPt
deltaX deltaX DELTAXt
deltaY deltay DELTAYt
XFact XFact XFACTt
YFact YFact YFACTt
Xres XresO XRESt
PlotStep PlotStep PLOTSTEPt
N (TVM) fin_N FINNt

1% fin_|I FINIt

PV fin_PV FINPVt

PMT fin_ PMT FINPMTt
FV fin_FV FINFVt

CIY fin_CY FINCYt

PIY fin_PY FINPYt

Table 2.8: Variable Name, RAM Equate, and SysTok Value

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 21

System Variables that Are Output Only

These are the statistical output variables. They are stored to after executing either the
1-varstat, 2-varstat, or a regression command. The TI-83 Plus system considers these
variables invalid if no statistical command was executed; therefore, values are not
stored to them.

Recall these values using the following system routine.

Rcl_StatvVar Recalls a statistical result into OP1, if statistics are valid. The
accumulator contains a token value of the statistical variable to recall.

The token values are contained in the include file, TI83plus.inc.

User RAM

User RAM (see Fig. 2.4) is used to store the data structures of variables that are
dynamically created. These variables are created by both users and the TI-83 Plus
system.

The following sections contain an overall description of TI-83 Plus variable naming
conventions, data structures, creation, and accessing.

Variable Data Structures

Numeric Based Data Types

This class of data types is built of floating-point numbers, and in some cases, a size
field. These data types include Real, Complex, Real List, Complex List, and Matrix.

9 Bytes

+1 +2 +3 +4 +5 +6 +7 +8

T EXP DD DD DD DD DD DD DD

I ,

> First byte of
Table 2.9: Floating-Point Number Format mantissa

T = object type where:

Bit Description

0-4 0 if a real variable’s data,
OCh if part of a complex variable’s data

5-6 Future use
7 Mantissa sign — O = positive/1 = negative
EXP = 00h to FFh 80h to FFh = Exponent of (0) to (128)
7Fh to 00h = Exponent of (-1) to (-127)
DD = two digits of the mantissa, two per byte

TI-83 Plus Developer Guide Initial Release October 29, 1999

22 Chapter 2: TI -83 Plus Specific Information

A floating-point number has a left-justified mantissa (the most significant digit is always
the first digit). If the MSD is 0, the TI-83 Plus system assumes it is floating-point 0. A
floating-point number has a 14-digit mantissa and an exponent range of -128 to 127.
For example:

T EXP Mantissa
80 82 23450000000000 =-234.5

Real Data Type Structure

This data type structure is simply a floating-point number with bits 0 — 4 of its sign
byte = 0. For example:

80 82 23 45 00 00 00 00 00 =-234.5

Complex Data Type Structure

Complex numbers stored in a variable are two consecutive floating-point numbers, with
the first value being the real part and the second value being the imaginary part. Each
part of the complex number has bits 0 — 4 of its sign byte = 0Ch, the complex object
value. For example:

8C 82 23 45 00 00 00 00 00
0C 7F 25 00 00 00 00 00 00 =-234.5 + 0.25i

Note: When complex numbers are handled in the OP1 to OP6 areas, the real and imaginary parts are
not in consecutive RAM locations. They are, however, in consecutive OP registers.

Real List Data Type Structure

This data type consists of a two-byte size field with the number of elements in the list,
followed by a real number for each element in the list. The maximum number of
elements is 999. For example, a Real List with two elements, -234.5 and 230 would look
like:

size | element number 1 | element number 2
02 00 8082 23 45 0000000000 0082230000 00000000

The size bytes are stored with the least significant byte first.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 23

Complex List Data Type Structure

This data type consists of a two byte-size field with the number of elements in the list,
followed by a complex number for each element in the list. The maximum number of
elements is 999. For example, a complex list with two elements (1,2) and (4,5):

size | element number 1 —real part | element number 1 — imaginary part
02 00 0C 80 10 00 00 00 OO0 00 OO 0OC 80 20 00 00 00 00 00 00

| element number 2 — real part | element number 2 — imaginary part

0C 80 40 00 00 00 00 00 OO OC 80 50 00 00 00 00 00 00

Matrix Data Type Structure

This data type consists of a two byte-size field with the number of columns and rows in
the matrix, followed by a real number for each matrix element.

Matrices are stored in row major order, that is, each element of a given row is stored in
contiguous RAM. For example, given the following structure:

size bytes row 1
'row 2
'row 3
matrix
size | element

03 02 008010 000000000000 element(1,1)
00 80 20 00 00 00 00 00 00 element (1,2)
00 80 30 00 00 00 00 00 00 element (1,3)
00 80 40 00 00 00 00 00 00 element (2,1)
00 80 50 00 00 00 00 00 00 element (2,2)
00 80 60 00 00 00 00 00 00 element (2,3)

A row or column dimension cannot be 0, and it cannot be greater than 99. If an
application creates a matrix with either of these illegal dimensions, the TI-83 Plus
system may lock up.

TI-83 Plus Developer Guide Initial Release October 29, 1999

24 Chapter 2: TI -83 Plus Specific Information

Token Based Data Types

This class of data types is made up of a size field and tokens that represent TI-83 Plus
functions, commands, programming instructions, variable names — essentially anything
that can be entered into an TI-83 Plus BASIC program.

T1-83 Plus Tokens

A token can be comprised of one or two bytes which represents system functions,
commands, and variables. Instead of having to store the entire spelling of a function
inside a program, the function can be stored as a token that uses only one or two bytes.
For most applications, the tokens are only necessary when using variables. This will be
explained in the section on Variable Naming.

A list of tokens and their values can be found in the include file, TI83plus.inc.

Program, Protected Program, Equation, New Equation, and
String Data Type Structures

All of these data types have the same storage structure — a two-byte size field, the
number of bytes for token storage (not the number of tokens), followed by the tokens
themselves. For example, if graph equation Y1 = LCM(X,5), it would be stored as:

Two-byte
token
Size byte LCM (X : 5)
07 00 BB 08 10 58 2B 35 11

Note: New Equation type should be treated like any other equation.

Screen Image Data Type Structure
There is only one data type for this class of data structures — the Pict data type.

This variable’s data is a bit image of a graphic screen minus the bottom row of pixels. It
is made up of a two-byte size field, which is always equal to 756d (2F4h) and followed
by the 756 bytes. The first byte represents the first eight pixels of the display’s top pixel
row. Each successive byte represents the next eight pixels. When the end of a row is
reached, the next byte is the first eight pixels of the following row.

Example:

size | First 12 bytes is the top row of pixels
F4 02 12 34 56 78 09 23 45 98 A3 CB DE 12
7065 3498 56 77 09 06 80 C5 4D 00 Second row of pixels

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 25

Graph Database Data Type Structure

There is only one data type for this class of data structures — the GDB data type.

The variable data is a collection of graph equations, window variables, and mode flags
that have been saved.

Unformatted AppVar Data Type Structure

This data type was created solely for use by applications. It allows you to save and
restore a state after an application is exited and then re-entered by users.

Since you can put almost anything into an AppVar, the system does not know the format
of these variables. The system only shows the amount of memory taken by AppVars. It
also allows them to be deleted and to be sent/received through the link port.

The system code does not modify or destroy this memory between one execution of an
app and the next.

Users cannot access the contents of an AppVar, but they can delete, archive, and send
the contents over the link port to another TI-83 Plus or the TI-83 Plus GRAPH LINK™.

Guidelines for AppVar Usage

» To avoid conflicts with other application’s AppVars, use unique names that tie an
AppVar to the application.

» To verify that an application is using an AppVar that is intended for that application,
an expected value for the first four bytes of the AppVar should be written when it is
created and checked before it is used.

For example, my application uses AppVars to save some information about different
users who have run the application at sometime. When the application is started it
will search for all of the AppVars that represent users of the application, and ask the
user to choose their AppVar from a list. The application will know which AppVars to
display by looking at the first four bytes of the AppVar for a certain set of values. The
AppVars that contain the correct first four bytes are assumed to contain user
information.

» Applications must make sure that an AppVar that it uses is Unarchived before
attempting to modify it. See Archiving/Unarchiving.

Variable Naming Conventions

The OP registers are used to input variable names for many system routines. They are
used here to illustrate variable naming conventions.

Every variable name is a nine-byte entry that is moved in and out of system routines. All
of the utility routines that move floating-point numbers in RAM can be used to move
variable names.

TI-83 Plus Developer Guide Initial Release October 29, 1999

26

Chapter 2: T1 -83 Plus Specific Information

The general format of variable names is illustrated here using OP1.

OP1 | +1

+2

+3

+4 | +5 | +6

+7 | +8

T

Variable Name

Table 2.10: Variable Name Format

T = object type where:

Bit

0
1
2
3
4
5
6
7

Every variable name has associated with it an object (data) type, which is

Elag

Object Type
Object Type
Object Type
Object Type
Object Type
?

?

?

always stored in the first byte of the variable name format.

Object Type Value

00
01
02
03
04
05
06
07
08
0B
oC
0D
14
15
17

Object Type
Real

List

Matrix

Equation

String

Program
Protected Program
Picture

Graph Database
New EQU Obj
Complex Obj
Complex List Obj
Application Obj
AppVar Obj
Group Obj

Object Type Equate

RealObj
ListObj
MatObj
EquObj
StrngObj
ProgObj
ProtProgObj
PictObj
GDBObj
NewEquObj
CplxObj
CListObj
AppODbj
AppVarObj
GroupObj

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

27

Note: To check the type of a variable name in OP1, use the system routine CkOP1Real, which

places the type value from OP1 into the accumulator.

CkOP1Real
CListObj

B_CALL
cP

; type of OP1 to ACC
; see if complex list

Variable Name Spellings

There are two classes of variable names for the TI-83 Plus — predefined and user
defined. All variables are comprised of TI-83 Plus tokens, which are part of the include
file, TI83plus.inc.

Predefined Variable Names

These variable’s names are fixed by the TI-83 Plus and can only have a predetermined
data type.

Variables: A —Z and 6

These variables can only be of type RealObj or CplxObj.
They are all spelled with one token, tA to tTheta, followed by two zeros.

Example: Real Variable A

OP1 +1 +2 [+3 | +4 |+5 |[+6 |+7 | +8
RealObj tA o0 o0 |7 ? ? ? ?
00h 41h

Example: Complex Variable 6

OP1 +1 +2 |+3 | +4 |+5 |+6 |+7 | +8
CplxObj tTheta 00 (00 |? ? ? ? ?
0Ch 5Bh

List Variables: L1 —L6

These variables can be either ListObj or CListOb;.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarLst, which labels it as a list variable name. The

second token signifies which predefined list name it is, tL1 — tL6.

Example: Complex List Variable L3

OP1 +1 +2 | +3 |+4 |+5 |+6 |+7 |+8
CListObj |[tvarLst |t3 |00 |2 |2 |2 |2 |2
0Dh 5Dh 02h

TI-83 Plus Developer Guide

Initial Release October 29, 1999

28

Chapter 2: T1 -83 Plus Specific Information

Note: Lists can also be user-defined, see section entitled User-Defined Variable Names in this chapter.

Matrix Variables: [A]

—[J]

These variables can only be type MatOb;.

They are all spelled with two tokens followed by one zero.

The first token of the name is tVarMat, which labels it as a matrix variable name. The
second token signifies which predefined matrix name it is, [A] — [J].

Example: Matrix Variable [J]

oP1 +1 +2 +3 |+4 |+5 |+6 |+7 |+8
MatObj |tvarMat |tMatd |00 |2 |2 |2 |2 |2
02h 5Ch 09h

Equation Variables: Y1 — Y0, X1t — X6t, Y1t — X1t, r1 —r6, u(n), v(n), w(n)

These variables can be type EquObj or NewEquObj;.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarEqu, which labels it as an equation variable name.
The second token signifies which predefined equation name it is:

tYl —tYO for Y1-YO
tX1T —tX6T for X1t-— X6t
tY1T —tY6T for Y1t- Y6t
tR1 — tR6 for r1-r6
tun for u(n)

tvn for v(n)

twn for w(n)

Example: Function Equation Variable Y6

OP1 +1 +2 +3 |+4 |45 |+6 | +7 | +8
EquObj tvarEqu tYe 00 |2 ? ? ? ?
03h 5Eh 05h
Example: Parametric Equation Variable Y6t
OP1 +1 +2 +3 |+4 | +5 | +6 | +7 | +8
EquObj tvVarEqu tyeT |[(00 | ? ? ? ? ?
03h 5Eh 2Bh

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 29

Example: Polar Equation Variable rl

OP1 +1 +2 +3 |+4 |+5 |+6 |+7 |+8

EquObj tvVarEqu tR1 00 |2 ? ? ? ?
03h 5Eh 40h

Example: Sequence Equation Variable w(n)

OP1 +1 +2 +3 |+4 [+5 | +6 | +7 | 48
EquObj tvVarEqu twn 00 |7 ? ? ? ?
03h 5Eh 82h

String Variables: Strl — StrO

These variables can only be type StrngOb.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarStrng, which labels it as a string variable name. The
second token signifies which predefined string name it is, tStrl — tStr0O.

Example: String Variable Str5

OP1 +1 +2 +3 |+4 |45 |+6 |+7 | +8

StrngObj tVarStrng tStr5 00 |7 ? ? ? ?
04h AAh 04h

Picture Variables: Picl — PicO

These variables can only be type PictOb;j.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarPict, which labels it as a picture variable name. The
second token signifies which predefined picture name it is, tPicl — tPicO.

Example: Picture Variable PicO

OP1 +1 +2 +3 | +4 [+5 |46 | +7 [+8

PictObj tVarPict tPicO 00 |7 ? ? ? ?
07h 60h 09h

TI-83 Plus Developer Guide Initial Release October 29, 1999

30

Chapter 2: T1 -83 Plus Specific Information

Graph Database Variables: GDB1 — GDBO

These variables can only be type GDBOb;.
They are all spelled with two tokens followed by one zero.

The first token of the name is tVarGDB, which labels it as a graph database variable
name. The second token signifies which predefined graph database name it is,
tGDB1 — tGDBO.

Example: Graph Database Variable GDBO

OP1 +1 +2 +3 |+4 |45 |+6 |+7 | +8

GDBObj tVarGDB tGDBO 00 |7 ? ? ? ?
08h 60h 09h

Variable: Ans

This is a special variable that can be a string or any numeric data type. This variable
should not be used for long-term storage since the system updates it automatically.

It is spelled with one token, tAns followed by two zeros.

Example: Matrix Variable Ans

OP1 +1 +2 | +3 +4 | +5 |[+6 | +7 | +8

MatObj tAns 00 00 |? ? ? ? ?
02h 72h

User-Defined Variable Names

The T1-83 Plus allows open naming for some data types. Listed below are the naming
rules that these variables have in common. The restriction on the length of the name
varies by data type and is detailed for each data type.

» All variable names must start with a token in the range
tA —tTheta (A — Z or 0).

» All subsequent tokens can be a token in the range of
tA —tTheta (A—Z or 6) or t0 —t9 (0 - 9).

+ Do not use lowercase or international character tokens.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 31

User-Named Lists

These variables can be either ListObj or CListObj.

They are all spelled with the token tVarLst followed by up to a five-token name for the
list.

If the name of the list, following the tVarLst token, is less than five tokens, then the
name must be zero (0) terminated.

Example: Real List Variable LST1

OP1 +1 +2 +3 +4 +5 +6 +7 +8
ListObj tVarLst tL tS tT t1 00 ? ?
01lh 5Dh 4Ch | 53h 54h 31h
Example: Complex List Variable LIST1
OP1 +1 +2 +3 +4 +5 +6 +7 +8
ClListObj tVarLst tL tl tS tT t1 ? ?
0Dh 5Dh 4Ch | 49h | 53h 54h 31h

Note: There are lists with predefined names also. See the section entitled Predefined Variable Names.

User-Named Programs

These variables can be either ProgObj or ProtProgOb;.

Unlike other variable names detailed so far, these do not have a leading token to signify
that they are a program name.

The sign byte of a program name must be set to one of the program types.

Program names can be up to eight tokens in length. If less than eight tokens, the name

must be zero (0) terminated.

Example: Program Variable ABC

OP1 +1 |[+2 |+3 |+4 |+5 |+6 |+7 |+8
ProgObj tA | tB tc (00 [?2 |2 |2 |2
05h 41h | 42h | 43h

TI-83 Plus Developer Guide

Initial Release October 29, 1999

32

Chapter 2: T1 -83 Plus Specific Information

User-Named AppVars

These variables must be type AppVarOb;j.

Like program names, these variables do not have leading tokens to signify that they are
AppVar names.

The sign byte of AppVar names must be set correctly.

AppVar names can be up to eight tokens in length. If less than eight tokens, the name
must be zero (0) terminated.

Example: AppVar Variable AppVarl

OP1 +1 +2 +3 +4 +5 +6 +7 +8
AppVarObj tA tP tP tv tA tR tl 00
15h 41h | 50h 50h 56h | 41h |[52h | 31h

Accessing User Variables Stored In RAM — (Unarchived)
There are two ways to access variables.

» Use system routines that return pointers to them.

» Use system routines that recall the contents of variables.

This section addresses using system routines that return pointers.

Every variable that exists in the user data area has an entry in the variable Symbol
Table structure. To access the data for a particular variable, the Symbol Table is
searched for the variable’s entry.

Applications can use system routines to search the Symbol Table.

There are two main search routines that are used to find variables in the Symbol Table.
The routine you use depends on the type of variable being looked up. Program and
AppVar variables have separate search routines from all other data types.

Accessing Variables that Are Not Programs or AppVars

All of these variables have a type designator (e.g., tVarLst) as the first token in their
variable name. See the haming conventions section above.

The routine to search the Symbol Table for these variables is FindSym .

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 33

Input: OP1 = name of variable to search for

The sign byte need not have the correct data type of the variable; the search is done
on the name alone.

For example, if an application looks up variable A, the data type cannot be known
before searching because A can be a real or a complex data type.

The same applies to lists, which can be either real or complex.

Output: See Output from a variable search on the Symbol Table section below.

Accessing Programs and AppVar Variables

This type of variable does not have as part of its hame a token that signifies its data
type.

The routine to search the Symbol Table for these variables is ChkFindSym .

Input: OP1 = name of variable to search for

For this routine, the input name must have the data type in the sign byte set
correctly.

If the search is for a program variable having the data type in OP1 set to ProgObj,
the search also finds variables of the ProtProgObj data type.

For example, if an application wants to look up program ABC but does not know
whether it is a normal program, ProgObj, or a protected program, ProtProgQObj,
using OP1 as indicated below finds program ABC if it exists and is set to either
program data type.

OP1 +1 | +2 |43 |+4 |+5 |+6 |+7 |+8

ProgObj |[tA |tB |tCc |00 |2 |2 |2 |2
05h 41h | 42h | 43h

Output: Output from a variable search on the Symbol Table section below.

Output from a Variable Search on the Symbol Table

The output is the same for both search routines above.

Does the variable exist?
The carry flag is set if the variable is not found.
The carry flag is reset if the variable is found.

Example:

B_CALL FindSym ; look up variable in OP1
JR C,NotFound ; jump if it is not created

TI-83 Plus Developer Guide Initial Release October 29, 1999

34

Chapter 2: T1 -83 Plus Specific Information

e What data type is the variable?

When searching for some variables, the type is not always known.

ACC (accumulator) = data type of the variable

OP1 object type is also set to the variable data type.

Note: Only the lower five bits of both the ACC and OP1 are set. The remaining bits are random and
must be masked off to get the correct data type when checking.

Example: Search for list L1 to determine if it is a real or complex list.

LD
B_CALL

B_CALL
JR

AND
CP
JR

L1lname:
DB

Mov9ToOP1

Z,ComplexList

ListObj, tVarLst, tL1, 0

; OP1 =list L1 name

; look up list variable in OP1
; jump if it is not created

; remove none data type bits

; jump if the list was complex

e |s the variable’s data in RAM or archived in Flash ROM?

This is important information since variables that are archived need to be unarchived
for use by nearly all system routines and also for easier direct access by

applications.

— B register = 0 if the variable resides in RAM.

DE register = address in RAM of the first byte of the variable data structure.

The address returned is valid as long as no memory is created or deleted by
archiving, unarchiving, creating, or deleting variables. If any of these actions are
taken, it is necessary to relook up the variable and get the new address of the

data structure.

— B register does not = 0 if the variable resides in archive.

Note: An archived variable may need to be unarchived to be used in certain system routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

35

Example: Look up program ABC. If it is archived, then unarchive it.

LD
B_CALL

B_CALL
JR

LD
OR
JR

B_CALL
NotArchived:

ProgABC:
DB

HL,ProgABC
Mov9ToOP1

ChkFindSym
C,NotFound

AB
A
Z ,NotArchived

Arc_Unarc

; OP1 = program ABC name

; look up program
; jump if it is not created

; ACC = archived/unarchived info
;is it archived?
; jump if not

; unarchive the var

ProgObj, ‘ABC’, 0

Example: Search for list L1 and set DE = to the number of elements in the list.

Assume it is not archived.

LD
B_CALL

B_CALL
JR

EX
LD
INC
LD

L1Name:
DB

HL,L1Name
Mov9ToOP1

FindSym
C,NotFound

DE,HL
E,(HL)
HL

D,(HL)

; OP1 =list L1 name

; look up list variable in OP1
; jump if it is not created

; HL = pointer to data structure

; get the LSB of the number elements
; move to MSB

: DE = number elements in L1

ListObj, tVarLst, tL1, 0

e A pointer to the variable’s Symbol Table entry.

The HL register = address of the variable’s Symbol Table entry.

This is returned for both archived and unarchived variables. The Symbol Table
entries for all variables reside in RAM.

Creating Variables

There are two ways that variables can be created.

» Use system routines that create them directly.

» Use system routines that store a value to a variable, creating that variable if it does

not already exist.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

36

Chapter 2: TI1 -83 Plus Specific Information

This section addresses the first method, and the following section deals with the second
method.

Variables can only be created in RAM. Once created, they can be archived to the
Flash ROM.

A variable that already exists, even if archived, should not be recreated without first
deleting the current one. See Deleting Variables section below.

Routines that create variables do not check to see if a variable currently exists
before creating it. An application must check by searching the Symbol Table for the
variable. See routines FindSym and ChkFindSym . If this is not done, multiple
versions of the same variable exist leading to unpredictable side effects.

Do not create variables with sizes outside of their specified limits. For example, do
not create a list with 1000 elements. The system does not check for these types of
errors when creating a variable.

Some system routines will fail and may cause a lock-up condition if bad data is input
to them.

For more information see the Variable Data Structure section earlier in this chapter.

If there is not enough free memory available to create a variable, a system memory
error is generated, and the system’s error context will take over execution.

This can be avoided in two ways.

— Use the routine MemChk to see if there is enough free memory available before
attempting to create the variable.

— Use an error exception handler to trap the memory error (if one is generated).

To use option one, the size of the Symbol Table entry and the data structure must
be computed by the application. Therefore, the easiest is option two.

See the Error Handlers section.

When a variable is created, its data structure is not initialized. Only the two-byte
size field, if one is part of the structure, is initialized to the size the variable was
created at. For example, after creating a complex variable, the entire 18 bytes of the
data structure has random values.

After creating a list with 23 elements, the first two bytes of the data structure are set
to the number of elements, 17h 00h, the number of elements in hex, with the LSB
followed by the MSB.

If created data structures are not initialized by applications before returning to
normal system operation, the potential for a lock-up condition is very high.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 37

* Routines for creating variables:

CreateOEqu CreateEqu CreatePair CreateStrng
CreateRList CreateCList CreateRMat

CreateReal CreateCplx CreatePict

CreateAppVar CreateProg CreateProtProg

— Inputs:

OP1 = variable name to create.
HL = Number of bytes, number of elements or a dimension for some.

See Appendix A for exact inputs for each routine.

— Outputs:
Possible memory error, see above.
OP4 = variable name created with its sign byte set to the correct data type
OP1 =random
DE = pointer to data structure

HL = pointer to Symbol Table entry
For example, create a real list CAT with one element and initialize that element

to a value of five. Return CA = 0 if the variable is created, else CA = 1 if there is
not enough memory.

TI-83 Plus Developer Guide Initial Release October 29, 1999

38 Chapter 2: TI -83 Plus Specific Information

Create_CAT:
LD HL,catname
B_CALL Mov9ToOP1 ; OP1 = name
AppOnErr NoMem ; install error handler
LD HL,1 ; 1 element list
B_CALL CreateRList ; ret from call if no mem error
INC DE
INC DE ; DE = pointer to start of element 1
LD HL,FP_5
LD BC,9
LDIR ; set first element = 5
AppOffErr ; remove error handler
OR A ; CA =0 if successful
RET
CatName:
DB ListObj, tVarLst, ‘CAT", 0
FP_5:
DB 00h,80h,50h,00h,00,00,00,00,00

; control comes here if memory error during create

NoMem:
SCF ; CA =1 if not successful
RET

Storing to Variables

There are system routines that can be used to store to the entire contents of a variable’s
data structure.

These routines store a real or complex variable to N, X, Y, R, T, 6.
StoN StoX StoY

StoR StoT StoTheta

StoAns stores any numeric, equation or string to Ans.

StoOther stores to any numeric, equation or string variable.
Attributes of these routines include:

» If the variable that is being stored to does not exist, it is created if enough free RAM
is available.

» The current contents of the variable are not deleted if the new data being stored to
the variable does not fit in memory.

» Error checking is done to make sure that the data type being stored to the variable is
valid for that variable.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 39

« If the variable being stored to is archived, a system error is generated.

» Since system errors can be generated by these routines, an error handler should be
placed around calls to them. See the Error Handlers section.

The details on inputs and outputs for these routines can be found in Appendix A.

Note: The following example uses the routine PushRealO1 . See the Floating Point Stack section for
details.

Example: Store a value of 1.5 to variable Z

return CA = 0 if successful
CA = 1 if failed to store

Sto_Z:
B_CALL OP1Setl ;OP1=1
LD A,15h
LD (OP1+2),A ;OP1=15
B_CALL PushRealO1 :1.5->FPST
B_CALL ZeroOP1 ; OP1 = 00000000000
LD A'Z
LD (OP1+1),A ; OP1 =Z VAR NAME
AppOnErr Fail ; install error handler
B_CALL StoOther ; attempt to store, RET if no error
AppOffErr ; remove error handler
OR A ; CA = 0 for store is good
RET

Fail:
SCF ; CA =1 for no store
RET

Recalling Variables

There are system routines that can be used to recall the contents of real and complex
variables to OP1/OP2.

RclvVarSym RclY RcIN RcIX RclAns

Attributes of these routines include:

» If the variable does not exist or if it is archived, a system error is generated.
» If the variable is real, OP1 = the value.

» If the variable is cplx, OP1/OP2 = the value.

Note: Since system errors can be generated by these routines, an error handler should be placed
around calls to them.

The details on inputs and outputs for these routines can be found in Appendix A.

TI-83 Plus Developer Guide Initial Release October 29, 1999

40

Chapter 2: T1 -83 Plus Specific Information

Example: Recall the contents of variable C, assume it is created and not archived, and
check if it is real.

B_CALL ZeroOP1 ; OP1 = 00000000000
LD A'C

LD (OP1+1),A ; OP1 = C var name
B_CALL RclVarSym ; OP1/OP2 = value
B_CALL CkOP1Real ; ACC =type, Z =1 if real

Deleting Variables

Any variable that has an entry in the Symbol Table can be deleted, even if the data
is archived.

Preallocated system variables located in system RAM, such as Xmin, cannot be
deleted.

There are some system variables that also reside in user RAM. They are created in
the same way as user variables and have Symbol Table entries. All of these system
variables are spelled with an illegal first character so that they are excluded from any
menus that show the current variables that exist.

Some of these variables include # and ! which are two program variables used for
home screen entry and the first level of last entry. None of these variables should be
deleted.

The graph equations should not be deleted. The TI-83 Plus system will crash if
these equations are not created.

If an application wants to free the RAM used by a graph equation, it can delete the
equation and immediately recreate the equation with a size of O bytes. See the
CreateOEqu routine for further information.

When a variable is deleted, its Symbol Table entry and its data structure are
removed from RAM. If the data was archived, only the Symbol Table entry is
removed from RAM and the archive space made available. Deleting an archived
variable will not free much RAM space for other uses.

There are no holes left in RAM when a variable is deleted. Both the user memory
and Symbol Table are immediately compressed, and all of the freed RAM now
becomes part of the free RAM area.

There are three routines for deleting variables — DelVar, DelVarArc , and
DelVarNoArc . The difference between them is how an archived variable is handled.

Common inputs:
HL = pointer to the variable’s Symbol Table entry

DE = pointer to the variable’s data structure

Note: These inputs are output from a successful Symbol Table search, such as FindSym .

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 41

DelVar

DelVarArc

DelVarNoArc

Error if the variable is archived. This routine checks the contents of
the b register to be non-zero. If the contents is non-zero, it
assumes the variable is archived and generates a system error.
Otherwise, delete it from RAM. The b register is set to reflect
whether or not a variable is archived by any of the Symbol Table
search routines.

Delete the variable if archived or unarchived. This routine checks
the contents of the b register to be non-zero. If the content is non-
zero, then it assumes the variable is archived and deletes it from
the archive. Otherwise, it deletes it from RAM. The b register is set
to reflect whether or not a variable is archived by any of the
Symbol Table search routines.

Assumes the variable is not archived and deletes it from RAM.
This routine does not check the contents of the b register and
assumes the pointers input are RAM pointers, not pointers into the
archive space. Only use this routine if you are absolutely sure that
the variable resides in RAM.

Note: OP1 through OP6 are kept intact.

For example, if matrix [A] exists and is not archived, delete it and recreate it with a
dimension of five rows and three columns.

return CA = 0 if successful, or
CA =1 if it was archived or there was not enough free RAM to create it.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

42

Chapter 2: T1 -83 Plus Specific Information

Create_MatA:

LD HL,MatAname
B_CALL Mov9ToOP1
B_CALL FindSym ; look up
JR C,Createlt
LD AB
OR A ; archived?
JR NZ,Failed
B_CALL DelVarNoArc
Createlt:
AppOnErr Failed
LD HL,5*256+3 : dim wanted 5x3
B_CALL CreateRMat
AppOffErr
OR A
RET
MatAName:
DB MatObj, tVarMat, tMatA, 0

; OP1 = name

; jump if it does not exist

; jump if it is archived

; delete it, it is not archived

; install error handler

: ret from call if no mem error

: remove error handler

; CA =0 if successful

; control comes here if memory error during create

Failed:
SCF
RET

Archiving and Unarchiving

; CA =1 if not successful

Applications can use the Flash archive area in the same way as users do during normal
system operation. Variables can be moved from RAM to the archive (archived) area,
and also removed from the archive area and placed into RAM (unarchived). More
information on the uses of archiving can be found in the TI-83 Plus Graphing Calculator

Guidebook.

archive.

Note: Most system routines are not designed to work with variables stored in the Archive area, and
many do not check for this error. Be sure to check where variables are located, RAM or Archive,
before using them as inputs to system routines not expecting variables to be residing in the

e What can be archived?

All user variables can be archived, except the following (listed by type):

RealObj / CpIxObj:
ListObj / CListOb;j:
EquObj, NewEquOb;:

X, Y, T,0
RESID, IDList
Any

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 43

* What cannot be unarchived?
The following can not be unarchived:
GroupObj
AppObj
e Entry Point

Arc_Unarc If the variable in OP1 is archived, unarchive it, otherwise archive it.
See Appendix A for further information.

System errors can be generated. See the Error Handlers section for further
information.

A battery check should be done before attempting to archive a variable. There is a
risk of corrupting the archive if the attempt fails due to low batteries. Applications
should display a message informing users to replace the batteries if low batteries are
detected.

As an Archive example, archive the variable whose name is in OP1.

B_CALL Chk_Batt_Low ; check battery level

RET NZ ; ret if low batteries

B_CALL ChkFindSym

RET C ; return if variable does not exist

LD AB ; get archived status

OR A ; if non zero then it is archived

; already

RET NZ ; ret if archived

AppOnErr errorHand ; install error handler

B_CALL Arc_Unarc ; archives the variable

AppOffErr ; remove error handler
errorHand:

RET

Related Routines
ChkFindSym Searches the Symbol Table for a variable.
MemChk Returns the amount of free RAM available.

See Appendix A for further information.

TI-83 Plus Developer Guide Initial Release October 29, 1999

44 Chapter 2: TI -83 Plus Specific Information

Accessing Archived Variables without Unarchiving

Variable data residing in the archive can be accessed without unarchiving the data to
RAM. This is a read-only operation, an application cannot write data directly to the
archive.

» Locating archived variables

Archived variables will have an entry in the Symbol Table that contains information
on where the data resides in the archive.

The Symbol Table search routines used to locate variables in RAM, FindSym and
ChkFindSym, are also used to locate variables in the archive. See the Accessing
User Variables Stored in RAM section for a detailed explanation of these routines.

If a variable is archived, the output from the Symbol Table search routine will return
two key pieces of information.

B register = ROM page of the start of the archived data.
DE register = the offset on the ROM page to the start of the archived data.

« How is variable data stored in the archive?

The actual data for a variable has the same structure as when it resides in RAM.
See Variable Data Structures section for further information.

In addition to the variable’s data structure, a copy of the variable’s Symbol Table
entry is also stored in the archive. Fig. 2.11 below shows the format used for each
variable stored in the archive.

Data Size of symbol Size varies by the name Size computed the same

valid entry + Data size and data type as variables in RAM

Flag LSB MSB Symbol Table Entry Variable Data Structure
Increasing addresses -------- >

Table 2.11: Format of Archive Stored Variables

Archived data for a single variable can cross ROM page boundaries. System
routines to read from the archive are provided to make this cross boundary situation
transparent to applications.

» Reading bytes from the archive

There are two methods provided for reading data from the archive — direct and
cached.

— Direct

This method involves an application reading either one or two bytes at a time
from the archive — supplying both the ROM page and offset to the data to be
read.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 45

Inputs: B register = ROM page of byte(s) to copy
HL register = offset on the ROM page to the byte(s) to copy
Routines:

LoadCIndPaged Copies a byte from the archive to C
C = byte from archive
B, HL = intact

LoadDEIndPaged Copies two bytes from the archive to DE
E = first byte read
D = second byte read

B, HL = location of the second byte, crossing a ROM
page boundary is handled

Recommended support routines that an application should include as part of
the application.

LoadClIndPaged_inc:
B_CALL LoadClIndPaged ; read byte from archive

; fall thru and INC pointer past byte read

inc_BHL:

INC HL ; increment offset in page
BIT 7,h ; Cross page boundary?
RET Z ; no, B, HL = ROM page and
; offset
INC B ; increase ROM page number
RES 7.H
set 6,H ; adjust offset to be in

; 4000h to 7FFFh
RET

LoadDEIndPaged_inc:

B_CALL LoadDEIndPaged ;read 2 bytes from
; archive
JR inc_BHL ; move pointer to byte

; after 2 read
— Cached

This method provides management of the ROM page and offset of data in the
archive while reading multiple bytes. These values are stored in predefined
system RAM locations. A 16 byte RAM cache is used to queue up consecutive
data from the archive. There are two routines used.

TI-83 Plus Developer Guide Initial Release October 29, 1999

46 Chapter 2: TI -83 Plus Specific Information

SetupPagedPtr Sets the initial value of the system RAM used to track
the current read location and the current amount of data
in the cache. This must be called before any data is
actually read.

Inputs: B register = ROM page of first byte to copy.
HL register = offset on the ROM page to the first byte(s) to copy.

PagedGet This routine has two functions. First is to fill the 16 byte cache
with mode data from the archive, whenever it has been
completely read. Second, is to return the next byte from the
cache to the caller. The first byte returned is at the location
input to SetupPagedPtr, followed by each consecutive byte
that follows.

Inputs: Initial inputs are set by SetupPagedPtr , and are updated after
each subsequent call to PagedGet.

Outputs: ACC = byte read.
Cache pointers updated.
Cache reloaded with next 16 bytes of archive if exhausted.

Note: Both of these methods, direct and cached, will force an application to read data
from the archive sequentially. This can be very inefficient if the eightieth byte of an
archived equation needed to be read. An application would have to read through
the first 79 bytes one at a time.

In Ram, the solution would be to add 80 to the address of the start of the equation
and then do one read. In the archive, it is not as simple. An application has to be
wary of ROM page boundaries and offsets into a ROM page.

Applications can use the following code to add a two byte value to a ROM page
and offset archive address, so that page boundary crossing is adjusted for. This
routine will work for adding values up to 4000h (16K) maximum.

; Add DE to ROM page and offset: B, HL

BHL_Plus_DE:

ADD HL,DE ; add DE to the offset HL
BIT 7H ; cross page boundary?
RET Z ; no, B, HL = ROM page and offset
INC B ; increase ROM page number
RES 7.H
SET 6,H ; adjust offset to be in 4000h
;to 7FFFh
RET

For example, look up archived AppVar MYAPPVAR, and read past its Symbol
Table entry in the archive to reach the data. Then read the two size bytes of the
AppVar.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

47

Data Size of Symbol | Size varies by the name Size computed the same
valid entry + Data size and data type as variables in RAM
Flag LSB MSB | Symbol Table entry Variable Data Structure

Increasing addresses

Table 2.12: Format of Archive Stored Variables

LD
RST
B_CALL

EX

CALL
CALL

LD

CALL

CALL

LD

CALL

CALL

RET

HL,MyAppVar
rMov9ToOP1
ChkFindSym

DE,HL

LoadCIndPaged_inc
LoadDEIndPaged_inc

; it can be skipped over to get to the AppVar's data structure

DE,5

BHL_plus_DE

LoadCIndPaged_inc

E.C

BHL_plus_DE

LoadDEIndPaged_inc

1

MyAppVar: asciz AppVODbj, ‘MYAPPVAR’

BHL_Plus_DE:
ADD HL,DE
BIT 7H
RET z
INC B
RES 7H
SET 6,H
RET

1

; OP1 = AppVar name
; find Symbol Table entry,
; and get pointers

; B = ROM page and DE = offset, to start of data in the archive

; B, HL now points to the
; data of the variable

; skip data valid flag
; skip data length, B, HL

; at symbol entry

; now the size of the Symbol Table entry needs to be computed so that

; DE = offset to name
; length of AppVar

; add DE to B, HL:

; page, offset

; C = name length, B, HL

; advanced
; DE = offset to start of
; AppVars data

; add DE to B, HL: page,
; offset

DE = size bytes of
; AppVar,

; add DE to the offset HL
cross page boundary?

; no, B, HL = ROM page and
; offset

; increase ROM page number

; adjust offset to be in
; 4000h to 7FFFh

TI-83 Plus Developer Guide

Initial Release October 29, 1999

48 Chapter 2: TI -83 Plus Specific Information

Manipulation Routines

List Element Routines

These routines are used for storing and recalling list element values and for changing
the dimension of a list.

AdrLEle Returns the RAM address of a list element.

GetLToOP1 Recalls an element of a list to OP1 if Real or OP1/OP2 if Cplx.

PutToL Stores OP1 if Real or OP1/OP2 if Cplx, to an element of a list.

IncLstSize Increments the size of an existing list by adding an element to the end
of the list.

InsertList Inserts one or more elements into an existing list.

DelListEl Deletes one or more elements from an existing list.

See Appendix A for details.

Matrix Element Routines

These routines are used for storing and recalling matrix element values and for
changing the dimension of a matrix.

AdrMEle Returns the RAM address of a matrix element.
GetMToOP1 Recalls an element of a matrix to OP1.
PutToMat Stores OP1 to an element of a matrix.
RedimMat Redimensions an existing matrix in RAM.

See Appendix A for details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 49

Resizing AppVar, Program, and Equation Variables

These data types can be resized in place without having to make an additional copy of
the variable. Following are the two routines, with examples, used to increase the data
size and to decrease the data size.

* Increasing the data size.

InsertMem Increases the size of an existing variable by inserting space at a given
address.

For example, insert 10 bytes at the beginning of an existing AppVar. If there is not
enough free RAM, the AppVar does not exist, or if the AppVar is archived, CA=1is

returned.
Insert_10:
LD HL,10 ; number bytes to insert
B_CALL EnoughMem ; check for free RAM
RET C ;ret CA=1if not
LD HL,AppVarName
B_CALL Mov9ToOP1 ; OP1 = name of AppVar
B_CALL ChkFindSym ; DE = pointer to data if exists
RET C ; ret if not found
LD AB ; archived status
ADD OFFh ; if archived then CA=1
RET C ; ret if archived
PUSH DE ; save pointer to size bytes of
: data
INC DE
INC DE ; move DE past size bytes
LD HL,10 ; number bytes to insert
B_CALL InsertMem ; insert the memory
POP HL ; HL = pointer to size bytes
PUSH HL ; save
B_CALL IdHLind ; HL = old size of AppVar,
; number bytes
LD BC,10
ADD HL,BC ; increase by 10, amount inserted
EX DE,HL : DE = new size
POP HL ; pointer to size bytes location
LD (HL),E
INC HL
LD (HL),D ; write new size.
OR A ;CA=0
RET
AppVarName: DB AppVarObj,'AVAR',0

See Appendix A for details on InsertMem .

TI-83 Plus Developer Guide Initial Release October 29, 1999

50 Chapter 2: TI -83 Plus Specific Information

» Decreasing the data size

DelMem Decreases the size of an existing variable by removing data at a given
address.

For example, delete 10 bytes at the beginning of an existing AppVar. If the AppVar
does not exist or if it is archived, CA =1 is returned.

Delete_10:

LD HL,AppVarName

B_CALL Mov9ToOP1 ; OP1 = name of AppVar

B_CALL ChkFindSym ; DE = pointer to data if exists

RET C ; ret if not found

LD AB ; archived status

ADD OFFh ; if archived then CA=1

RET C ; ret if archived

PUSH DE ; save pointer to size bytes of
; data

INC DE

INC DE ; move DE past size bytes

LD HL,10 ; number bytes to insert

EX DE,HL ; HL = pointer to start of delete,
; DE = number bytes

B_CALL DelMem ; delete the memory

POP HL ; HL = pointer to size bytes

PUSH HL ; save

B_CALL IdHLind ; HL = old size of AppVar,
; number bytes

LD BC,10

OR A

SBC HL,BC ; decrease by 10, amount deleted

EX DE,HL : DE = new size

POP HL ; pointer to size bytes location

LD (HL),E

INC HL

LD (HL),D ; write new size.

OR A ;CA=0

RET

AppVarName: DB AppVarObj,'AVAR',0

See Appendix A for details on DelMem.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 51

Symbol Table Structure

This structure contains an entry for each variable that is created. It contains information

about a variable’s type, name, and location in RAM or in the archive. The Symbol Table

begins in high memory at the end of the hardware stack and grows towards low memory
(backwards).

Addr
8000h

System RAM
(Fixed Size)

User RAM i
(Grows U p)

Temporary RAM
(Grows U p) i

Floatin g Point Stack i
(Grows U p)

Free RAM Ptemp - 1)

Programs, Lists,

Operator Stack T AppVars, Groups

(Grows Down)

(ProgPtr)

Symbol Table T
(Grows Down) Real, Complex, Matrix

Picture, Graph Database,
I—Lgrd;v:;rle Stack Equation
(Fixed Size) FEFFh

Symtable

Fig. 2.6: Symbol Table Structure
The Symbol Table is divided into two sections by data type.

The first byte of the Symbol Table for Real, Cplx, Mat, Pict, GDB, and EQU is at address
symTable and ends at address (progPtr-1).

The first byte of the Symbol Table for Prog’s, List AppVar and Group is at address
(progPtr) and ends at (pTemp-1).

symTable is a fixed address and never changes.
(progPtr) and (pTemp) are not fixed addresses.

For example, load the current start address of the Program/List/AppVar/Group Symbol
Table into register HL.

LD HL,(progPtr)

The Symbol Table is split by the structure of the entries.

TI-83 Plus Developer Guide Initial Release October 29, 1999

52 Chapter 2: TI -83 Plus Specific Information

Each entry is written from high memory to low memory (backwards).

Start of
Entr
Program, AppVar, Group y
-14 -13 -12 -11 -10 9| -8 | -7 -6 -5 -4 -3 -2 -1 0
Variable Name NL | Page | DAH | DAL |Ver |T2 T
8 characters max
Table 2.13: Program, AppVar, Group
. Start of
Lists Entry
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
F Variable Name tvarLst | NL | Page | DAH [DAL |Ver |T2 T
5 characters max 5Dh
Table 2.14: Lists
_ Start of
Real, Cplx, Mat, EQU, GDB, Pict Entry
-8 -7 6 -5 4 | 3 | 2|-1]o0
00 Second token First token of Page DAH | DAL | Ver [T2 T
of name name

Table 2.15: Real, Cplx, Mat, EQU, GDB, Pict

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information

53

* T = object type where:

Bit Flag

0 Object Type

1 Object Type

2 Object Type

3 Object Type

4 Object Type

5 Graph equation selected

6 Variable used during graphing
7 Link transfer flag

Object Type Value Object Type
00 Real

01 List

02 Matrix

03 Equation

04 String

05 Program

06 Protected Program
07 Picture

08 Graph Database
0B New EQU Obj
oC Complex Obj

oD Complex List Obj
14 Application Obj
15 AppVar Obj

17 Group Obj

T2 = Reserved for future use.

* Ver = Version number.

Object Type Equate

RealObj
ListObj
MatObj
EquObj
StrngObj
ProgObj
ProtProgObj
PictObj
GDBObj
NewEquObj
CplxObj
CListObj
AppObj
AppVarObj
GroupObj

— Each variable’s Symbol Table entry contains a byte field for its version.

— The version of a variable determines its scope of compatibility with future
upgrades of the TI-83 Plus.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

54 Chapter 2: TI -83 Plus Specific Information

— Afuture TI-83 Plus release may create a new data type that the earlier releases
do not know how to handle. This variable’s version number would be set higher
than the version number of the previous code released.

— If a new variable type is sent to an TI-83 Plus running an earlier version of
product code, the variable would not be accepted by the earlier product code
since the variable’s version number is higher than the products code.

e DAL = Data structure pointer’'s low (LSB) byte.
» DAH = Data structure pointer’s high (MSB) byte.

« PAGE = ROM page the data structure resides on if archived, if it resides in RAM,
unarchived, this byte is zero (0).

* NL = Name length of the variable.

Note: For lists include the byte tVarLst in the length.

 F = Formula number attached to a list.

— Lists can have a formula attached to them that is executed every time the list is
accessed. The result of the execution is stored into the lists data structure.

— If this value is 0, there is no formula.

— This value is used to generate a unique name for the formula attached to a
particular list variable.

— The Symbol Table entry for one of these formulas would be:

-8 -7 -6 -5 -4 -3 -2 -1 0
00 F# ? Page DAH DAL Ver T2 EquObj
3Fh

Table 2.16: Formula Example

» Variable names — See Naming Conventions.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

55

Example: A routine that traverses both sections of the Symbol Table.

Traverse_symTable:
LD
LD
LD

loop:
OR
SBC

RET
RET

ADD
LD
AND

LD
SBC
LD

CP
JR

CP
JR

CP
JR

CP
JR

CP
JR

DEC
LD
INC
CP
JR
movetonext:

LD
INC

HL,symTable
D,0
BC,(pTemp)

HL,BC

HL,BC
A,(HL)
1Fh

E,6
HL,DE
E3

AppVarObj
Z,movetonext

ProgObj
Z,movetonext

ProtProgObj
Z,movetonext

TempProjObj
Z,movetonext

groupprogobj
Z,movetonext

HL
A,(HL)

HL

tVarLst
NZ,movetonextl

E,(HL)
E

; move HL to next symbol table entry sign digit

movetonextl:
OR
SBC
JR

A
HL,DE
loop

; HL = pointer to first symbol entry

; BC = pointer to byte after the end
; of the Symbol Table

; current - end, if CA then done with
; search

; return if no more syms to check

; return if no more to check

; restore current search pointer
; get symbol entry type
; mask off variable type

; DE = offset to NL or first byte of
; name
; (HL) = NL or first byte of name

; DE = offset to next entry if not a
; program/list/group/AppVar
; current entry an AppVar
; yes, get NL to find next entry

; current entry a program
; yes, get NL to find next entry

; current entry a program
; yes, get NL to find next entry

; current entry a program
; yes, get NL to find next entry

; current entry a group var
; yes, get NL to find next entry

; (HL) = tVarLst if a list
; fix
; current entry a list

; ho

; DE = length of name
; DE = length of name + 1

; HL = next symbol table entry address

TI-83 Plus Developer Guide

Initial Release October 29, 1999

56 Chapter 2: TI -83 Plus Specific Information

Floating Point Stack (FPS)

The Floating Point Stack (FPS) is a TI-83 Plus system RAM structure that begins at the
end of the variable data storage area and grows toward the Symbol Table storage area.

The stack grows and shrinks in size in multiplies of nine bytes ONLY. This entry size is
the size of a floating-point number.

This does not mean that all entries pushed onto the stack need be floating-point
numbers. The content of the nine bytes, in most cases, can be random data or a
Floating Point Stack. The only exception is when system routines are used to
manipulate the Floating Point Stack expecting data type information to be stored in the
entry to be placed on, removed from, copied to, or copied from the FPS.

Many of the TI-83 Plus system routines will use the FPS for argument passing and
temporary storage during computations.

Addr
8000h

System RAM
(Fixed Size)

User RAM i
(Grows Up)

FPSBASE: 2 byte RAM
pointer to the start of
Temporary RAM the stack.

(Grows Up) i

Floating Point Stack

(Grows Up) i Floating Point Stack

(Grows Up) i FPS: 2 byte RAM
pointer to the end of

Free RAM the stack + 1.

Operator Stack T
(Grows Down)

Symbol Table T
(Grows Down)

Hardware Stack
(Fixed Size)

FFFFh

Fig. 2.7: TI-83 Plus System RAM

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 57

Naming Convention

The following abbreviations are used when dealing with the Floating Point Stack.
FPS = Floating Point Stack

FPST = Floating Point Stack Top. This is the last nine bytes of the FPS.

FPS1 = Floating Point Stack minus 1 entry. This is the second to last nine bytes of the
FPS. Each previous nine bytes would continue this scheme FPS2,
FPS3 ... FPSn.

For example, assume the FPS is empty, (FPS) = (FPSBASE) and OP1 = floating-point
value 1, and OP2 = floating-point value 2.

B_CALL PushRealO1 ; pushed 9 bytes of OP1 -> FPST
B_CALL PushRealO2 ; OP2 -> FPST, FPST -> FPS1
RAM would look similar to this depending on fpBase value.
Addr
(fpBase)-----> 9C00 80h 10h 00 00 00 00 00 00 00 (1.00000000) FPS1
9C09 80h 20h 00 00 00 00 00 00 00 (2.00000000) FPST
(FPS)---m-—- > 9C12

General Use Rules
The following are some general use rules when manipulating the FPS.
* The FPS can be used by applications at anytime.

» The only time that the FPS cannot be allocated or deallocated to is during a system
edit input session.

» Any allocations (pushes) to the FPS are the responsibility of the routine that made
the allocation. Some system routines will take arguments that have been put onto
the FPS and will remove them.

* Not cleaning the FPS properly could cause system lockups during application
execution or after the application is exited.

» If the system’s error context is invoked, (e.g., ERR:DOMAIN), the FPS will be reset.

« If an attempt is made to allocate space on the FPS with insufficient free RAM
available, a system error is generated.

These system errors can be avoided in the same manner as creating variables are, with
the use of an error handler invoked before the allocation is attempted. See the section
on Error Handlers later in Chapter 2.

TI-83 Plus Developer Guide Initial Release October 29, 1999

58 Chapter 2: TI -83 Plus Specific Information

FPS System Routines

The OP registers are used extensively by the system’s FPS routines for input and
output.

FPS Allocation Routines

These routines are separated by either the size of the allocation or by a Data Type of a
value, Real/Complex.

» Pushes nine bytes onto the FPS. For these routines, the word Real implies nine
bytes.

PushReal Pushes nine bytes pointed to by HL onto the FPS.

PushRealO1 Allocates nine bytes on FPS then OPL1 is copied to FPST.
PushRealO2 Allocates nine bytes on FPS then OP2 is copied to FPST.
PushRealO3 Allocates nine bytes on FPS then OP3 is copied to FPST.
PushRealO4 Allocates nine bytes on FPS then OP4 is copied to FPST.
PushRealO5 Allocates nine bytes on FPS then OP5 is copied to FPST.
PushRealO6 Allocates nine bytes on FPS then OP6 is copied to FPST.

» Pushes a complex number from two consecutive OP registers onto the FPS.

For these routines, the REAL part of the complex number is in the OP register
specified and the IMAGINARY part is in the following OP register. Only nine bytes of
each of the registers are pushed onto the FPS.

PushMCpIxO1 Pushes OP1 onto FPS then pushes OP2 onto FPS. FPS1 = OP1,

FPST = OP2.
PushMCpIxO3 Pushes OP3 onto FPS then pushes OP4 onto FPS. FPS1 = OP3,
FPST = OP4.

e Checks the data type of a value in an OP register for either Real or Cplx, and
pushes the value onto the FPS.

These routines check the specified OP register’'s data type byte, and if CpIxObj, then
pushes a complex number from the OP registers in the same way as the
PushMCplx routines above. Otherwise, pushes nine bytes from the register
specified onto the FPS.

PushOP1 Pushes OP1 or OP1/OP2, checks OP1 = CplxObj.
PushOP3 Pushes OP3 or OP3/0OP4, checks OP3 = CplxObj.
PushOP5 Pushes OP5 or OP5/0OP6, checks OP5 = CplxObj.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 59

» Block allocates space on the FPS with no data transfer. This is done to preallocate
space needed on the FPS in one step. To set the values, the CopyToFPS routines
need to be used. They are described later in this section.

AllocFPS Allocates HL number of nine-byte entries.

AllocFPS1 Allocates HL number of bytes, which must be a multiple of nine.

FPS Deallocation Routines

» Pops nine bytes off of the FPS. For these routines, the word Real implies nine bytes.

PopReal Removes nine bytes off of the FPS and writes to RAM pointed to
by DE.

PopRealO1 Removes nine bytes from FPS then copies to OP1.

PopRealO2 Removes nine bytes from FPS then copies to OP2.

PopRealO3 Removes nine bytes from FPS then copies to OP3.
PopRealO4 Removes nine bytes from FPS then copies to OP4.
PopRealO5 Removes nine bytes from FPS then copies to OP5.
PopRealO6 Removes nine bytes from FPS then copies to OP6

* Pops a complex number, or two nine-byte entries, off of the FPS into two
consecutive OP registers.

For this routine, the first nine-bytes removed from the FPS are written to the OP
register following the one specified, and the preceding nine bytes are written to the
OP register.

PopMCplxO1 Removes nine bytes from FPS then copies to OP2 and removes
next nine bytes from FPS then copies to OP1.

e Checks the data type of a value in FPST for either Real or Cplx, and pops the value
into one or two OP registers.

These routines check FPST entry’s data type byte, and if CplxObj, then pops FPST
and FPS1 entries into the specified OP registers. Otherwise pops nine bytes FPST
into the specified OP register.

PopOP1 Removes nine or 18 bytes from the FPS placing them into OP1/OP2.
PopOP3 Removes nine or 18 bytes from the FPS placing them into OP3/OPA4.
PopOP5 Removes nine or 18 bytes from the FPS placing them into OP5/OP6.

TI-83 Plus Developer Guide Initial Release October 29, 1999

60

Chapter 2: T1 -83 Plus Specific Information

Block deallocates entries from FPS with no data transfer.

These routines remove entries starting at FPST by modifying the value of the pointer

FPS.

DeallocFPS Removes HL number of nine byte entries from the FPS.

DeallocFPS1 Removes DE number of bytes from the FPS, this must be a

multiple of nine.

Copy Data To and From Existing FPS Entries

Accesses entries on the FPS by using the RAM pointers FPS and FPSBASE, which

define the boundaries of the FPS.

Copies nine bytes from RAM to an FPS entry.

CpyToStack If this routine is to be used, it is recommended that you create this
routine in your APP/ASM:

; input: C = offset from (FPS) to start of 9
byte entry to write to. max = 252

ex:C=9 ->FPST
18 -> FPS1

DE = pointer to 9 bytes of RAM to copy to FPS

CpyToFPS:

LD HL,(FPS)

B_CALL CpyToStack
CpyToFPST Copies nine bytes at DE to FPST.
CpyToFPS1 Copies nine bytes at DE to FPS1.
CpyToFPS2 Copies nine bytes at DE to FPS2.
CpyToFPS3 Copies nine bytes at DE to FPS3.
CpyO1ToFPST Copies nine bytes in OP1 to FPST.
CpyOlToFPS1 Copies nine bytes in OP1 to FPS1.
CpyO1ToFPS2 Copies nine bytes in OP1 to FPS2.
CpyOl1ToFPS3 Copies nine bytes in OP1 to FPS3.
CpyO1ToFPS4 Copies nine bytes in OP1 to FPS4.
CpyOlToFPS5 Copies nine bytes in OP1 to FPS5.
CpyO1ToFPS6 Copies nine bytes in OP1 to FPS6.
CpyOl1ToFPS7 Copies nine bytes in OP1 to FPS7.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information

61

CpyO2ToFPST
CpyO2ToFPS1
CpyO2ToFPS2
CpyO2ToFPS3
CpyO2ToFPS4

CpyO3ToFPST
CpyO3ToFPS1
CpyO3ToFPS2
CpyO3ToFPS3

CpyO5ToFPS1
CpyO5ToFPS3

CpyO6TOFPST
CpyO6ToFPS2

Copies nine bytes in OP2 to FPST.
Copies nine bytes in OP2 to FPS1.
Copies nine bytes in OP2 to FPS2.
Copies nine bytes in OP2 to FPS3.
Copies nine bytes in OP2 to FPSA4.

Copies nine bytes in OP3 to FPST.
Copies nine bytes in OP3 to FPS1.
Copies nine bytes in OP3 to FPS2.
Copies nine bytes in OP3 to FPS3.

Copies nine bytes in OP5 to FPS1.
Copies nine bytes in OP5 to FPS3.

Copies nine bytes in OP6 to FPST.
Copies nine bytes in OP6 to FPS2.

Copies nine bytes from a FPS entry to RAM.

CpyStack

; input: C = offset from (FPS) to start of 9
byte entry to copy. max = 252

ex:C=9 ->FPST
18 -> FPS1

DE = pointer to 9 bytes of RAM to copy to

CpyfrFPS:

LD HL,(FPS)

B_CALL CpyStack
CpyFPST Copies nine bytes from FPST to DE.
CpyFPS1 Copies nine bytes from FPS1 to DE.
CpyFPS2 Copies nine bytes from FPS2 to DE.
CpyFPS3 Copies nine bytes from FPS3 to DE.
CpyTolFPST Copies FPST to OP1.
CpyTolFPS1 Copies FPS1 to OP1.

If this routine is to be used, it is recommended that you create this
routine in your APP/ASM.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

62

Chapter 2: TI1 -83 Plus Specific Information

CpyTolFPS2
CpyTolFPS3
CpyTolFPS4
CpyTolFPS5
CpyTolFPS6
CpyTolFPS7
CpyTolFPS8
CpyTolFPS9
CpyTolFPS10
CpyTolFPS11

CpyTo2FPST
CpyTo2FPS1
CpyTo2FPS2
CpyTo2FPS3
CpyTo2FPS4
CpyTo2FPS5
CpyTo2FPS6
CpyTo2FPS7
CpyTo2FPS8

CpyTo3FPST
CpyTo3FPS1
CpyTo3FPS2

CpyTo4FPST
CpyTo5FPST

CpyTo6FPST
CpyTo6FPS2
CpyTo6FPS3

Copies FPS2 to OP1.
Copies FPS3 to OP1.
Copies FPS4 to OP1.
Copies FPS5 to OP1.
Copies FPS6 to OP1.
Copies FPS7 to OP1.
Copies FPS8 to OP1.
Copies FPS9 to OP1.
Copies FPS10 to OP1.
Copies FPS11 to OP1.

Copies FPST to OP2.
Copies FPS1 to OP2.
Copies FPS2 to OP2.
Copies FPS3 to OP2.
Copies FPS4 to OP2.
Copies FPS5 to OP2.
Copies FPS6 to OP2.
Copies FPS7 to OP2.
Copies FPS8 to OP2.

Copies FPST to OP3.
Copies FPS1 to OP3.
Copies FPS2 to OP3.

Copies FPST to OP4.
Copies FPST to OP5.

Copies FPST to OP6.
Copies FPS2 to OP6.
Copies FPS3 to OP6.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 63

DRIVERS LAYER

The Drivers layer of the TI-83 Plus system includes such areas as the keyboard, the
display, and the link port.

Keyboard

There are two ways to read key presses on the TI-83 Plus.
— Poll for scan codes directly.
— Use the system key read routine, GetKey .

* Poll for scan codes
This method is used in two different situations.

— When alpha or second functions located on the keyboard are not used in the
application.

— When keys need to be recognized as fast as possible, this is usually used for
game-type applications programming.

— See the Automatic Power Down™ (APD™) section.
This method will allow an application to know what physical key is pressed only.

— This method will not support silent link activity. Any link activity started by
either another unit or a computer will not be detected by the system. Applications
must poll for link activity on their own. See the Link Port section later in this
chapter.

How it works:

— The system interrupt handler will look for key presses and when one is detected,
write the scan code for that key to a RAM location. An application will then
periodically check that RAM location for a scan code value.

— Interrupts must be enabled for the system to scan the keyboard in the
background. This system flag must be reset:

indicOnly , (IY + indicFlags)

If this flag is set, then the interrupt handler will not scan the keyboard. This flag
should only be set when the run indicator needs to be seen and no keyboard
inputs are expected. Setting this flag will cause the interrupt service time to be
shortened and overall execution faster.

TI-83 Plus Developer Guide Initial Release October 29, 1999

64 Chapter 2: TI -83 Plus Specific Information

— The key does not have a scan code assigned to it, the interrupt handler will
set a flag if it is pressed. An application must check this flag to handle the
key press.

Flag: oninterrupt , (IY + onFlags)

This flag should be reset by an application after detecting an key press. If it
is not reset, an application will assume that the key had been pressed again.
The interrupt handler does not reset this flag.

— The scan code values are equated in the include file named TI83plus.inc.
Fig. 2.8 below shows the scan codes associated with their keys.

" O

35 34 33 32 31

36 37 38 04
s [s S [. X

30 28 20 D é D

2F 27 1F 17 oF

(] |] | J |] | J
2E 26 1E 16 0E

(] |] |) |] | J
2D 25 1D 15)

(] |] | J |] | J
2c 24 1c 14 oc

(] |] |] |] |)
28 23 1B 13 0B

(] |) |) |] | J
2A 22 1A 12 0A

(]) |] |] | J
21 19 11 09

Fig. 2.8: Calculator Scan Code

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

Example one: This example will use the Z80 halt instruction to enter into low power

mode, and upon waking up, will check:

if a key had been pressed,

check for the key being pressed,

turn off the run indicator while waiting for a key, and

disable APD while waiting and re-enable it after.

anykey:

RES

B_CALL
RES
RES

anykeylp:

El
HALT
BIT
JR
CALL
OR

JR

foundkey:

SET
RES
RET

GetCSC:

LD
DI

LD
LD

RES

El
RET

indicOnly,(IY+indicFlags)
RunIndicOff

onlinterrupt,(IY+onFlags)
apdAble,(IY+apdFlags)

oninterrupt,(IY+onFLags)
NZ,foundkey

GetCSC
A
Z,anykeylp

apdAble,(lY+apdFlags)
onlinterrupt,(IY+onFlags)

HL,kbdScanCode

A,(HL)
(HL),0

kbdSCR,(IY+kbdFlags)

; make sure keys are
; scanned
; turn off run indicator
; reset On key flag
; turn off APD

; turn on interrupts
; low power state
; On key pressed
; return if yes

: local routine to look
: for scan code
; if non zero then have
: a scan code
; jump if no scan code
; present

; turn on APD
; reset On key flag

; interrupts off
; get possible scan code
; clear out for next
; scan
; needed for system
; key scan to work
; interrupts on

TI-83 Plus Developer Guide

Initial Release October 29, 1999

66 Chapter 2: TI -83 Plus Specific Information

Example two: This example will stay in a loop and make calls to read key, which will
return:

Z =1 if no key found, Z = 0 if a key is detected,
ACC = scan code of key, 0 = key

run indicator will be running, and

— allow APD.

ex_2:
B_CALL RunindicOn ; turn on run indicator
SET apdAble,(lY+apdFlags) ; turn on APD

KeyLoop:
RES onlinterrupt,(IY+onFLags) ; reset On key flag

; this part of the loop could be modifying the screen with

; animation of some kind, or doing other work while waiting for a key to

; be input.
CALL readKey ; see if key pressed
JR Z,KeylLoop ; jump if no key found

; here we have a key press, ACC = scan code, 0 = on key

OR A ; is it the on key ?

JP Z,Handle_On_Key ; jump if yes

CcP skEnter ; enter key scan code ?
JP Z,Handle_Enter_key

; check for rest of keys that matter . ..

readkey:
RES indicOnly,(IY+indicFlags) ; make sure keys are
; scanned
El ; turn on interrupts
CALL GetCSC ; local routine to look
; for scan code
BIT oninterrupt,(IY+onFlags) ; On key pressed
JR Z,notOnkey
LD A0 ; scan code for on key,
; Z =0 from test
RET
notOnkey:
OR A ; any scan code found
RET ; Z=11if no key, else

:Z2=0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 67

e Use the system key read routine, GetKey.

This method is used when the alpha and second functions on the keyboard are valid
inputs to the applications.

Unlike polling for scan codes which returns only one value for each key on the
keyboard, this routine could possibly return up to four different values for the
same key. Depending what key modifiers, alpha and second, may have been
activated.

See the Automatic Power Down (APD) section.

This method will support silent link activity. Any link activity started by either
another unit or a computer will be detected by the system. If the TI-GRAPH LINK
attempts transfer a variable to/from the TI-83 Plus, the application will be shut
down. See the following example.

The pull down menu system is not controlled by this routine — the key value of
the menu will be returned but the menu will not activate.

How it works:

Interrupts must be enabled.

The key flag should be reset before calling.
oninterrupt , (IY + onFlags)

This system flag must be reset:
indicOnly , (IY + indicFlags)

If this flag is set, the interrupt handler will not scan the keyboard. This flag should
only be set when the run indicator needs to be seen and no keyboard inputs are
expected. Setting this flag will cause the interrupt service time to be shortened
and overall execution faster.

Make a B_CALL to GetKey.

Control remains in GetKey until a returnable key entry is pressed, the unit is
turned off, or link activity has caused the application to be put away.

The key presses that are not returned are [ALPHA] and [2nd].
The key code is returned in the ACC.

TI-83 Plus Developer Guide Initial Release October 29, 1999

68 Chapter 2: TI -83 Plus Specific Information

— The key has a key code of 0 and the flag indicating that it was pressed is
also set.

oninterrupt , (IY + onFlags)

— The key code returned can be either one or two bytes. The ACC is checked to
see if a one or two byte key code is returned.

There are two values returned that signal a two byte key code:
kExtendEcho and kExtendEcho2

There is a table for each of these keys that list the second byte key values
associated with them which can be found in the include file, TI83plus.inc.

If either of the above values are returned, the second byte of the key code is
located in the RAM location (keyExtend) .

For example, the key code for DrawF are the two bytes kExtendEcho and
kDrawF. GetKey would return the ACC = kExtendEcho and (keyExtend) =
kDrawF .

— Lowercase Alpha keys

When the following flag is set, consecutive presses of the key will become
the mechanism for lowercase alpha key entry.

lwrCaseActive, (IY + appLwrCaseFlag)

This flag should be reset when lowercase is not needed. It should also be reset
before exiting the application.

The lowercase alpha keys are two byte key codes with the first byte being
kExtendEcho?2 .

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

69

For example, use the GetKey routine to input only keys A-Z until either or

is pressed.
Enter_Alphas:

keyLoop:

Return:

B_CALL
RES

B_CALL
RES

El
B_CALL
RES
OR

JR

CP
JR

CP
JR

CP
CALL
JR

B_CALL

RET

RunIndicOff
indicOnly,(IY+indicFlags)

DisableApd
onlinterrupt,(IY+onFlags)
GetKey
onlinterrupt,(IY+onFlags)
A

Z,Return

KEnter
Z,Return

kCapz+1
NC,keyLoop

kCapA

NC,StoreKey
keyLoop

EnableApd

; no run indicator
; make key reads are

; done
; N0 auto power down

; clear on pressed

; wait for a key

; clear on pressed

; on key ?
; yes return
; jump if Enter key
; possible A-Z

; no ignore

; store it if A-Z
; look for more

; auto power down is
; enabled

TI-83 Plus Developer Guide

Initial Release October 29, 1999

70 Chapter 2: TI -83 Plus Specific Information

Display
There are two methods to access the TI-83 Plus display.
» Using system routines for displaying characters and strings.

* Writing directly to the display driver that controls what is displayed (advanced).

Note: See the Graphing and Drawing section also.

Displaying Using System Routines

WARNING: Most of the TI-83 Plus system display routines will disable interrupts which results in no
keyboard scans, run indicator updates, APD, or cursor updates. Applications must re-enable
interrupts (El), if needed.

Display Utility Routines

CIrLCD Clears the display. The split screen setting is checked to determine
how much of the display to clear.

CIrLCDFull Clears the entire display while ignoring the split screen setting.

ClrScrn Clears the display and the text shadow buffer. The split screen setting
is checked to determine how much of the display and buffer to clear.

ClrScrnFull Clears the display and the text shadow buffer while ignoring the split
screen setting.

ClIrTxtShd Clears the entire text shadow buffer.

SaveScreen Copies a bit image of the current display to RAM.

Displaylmage Displays a bit map image.

RunindicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunindicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 71

Displaying Text

The display is made up of 64 rows of 96 pixels. The TI-83 Plus has two sets of routines
that display text. The difference between the two sets of routines is how the text position
in the display is specified. The following are two distinct mappings of the display, home
screen and pen display.

e Home Screen Display Mapping

This mapping corresponds to the positioning of text that the home screen context
uses. The display is mapped out to eight rows of 16 characters.

penCol
0 1 2 3 4|5 6 7 8 |9 10 11| 12 | 13 |14 | 15

penRow

~N[jofo|~h|lW|IN|F|O

Fig. 2.9: Home Screen Display Mapping
- Two bytes of RAM are used to position text written:
(curRow) = row coordinate (0 — 7)
(curCol) = column coordinate (0 — 15d)
- Font
5 (width) x 7 (height) (pixels) large characters
- Text formatting

Reverse video:
Display all text written in reverse video:
textinverse, (Y + textFlags); default = 0

Auto scroll:
If the bottom of the screen is reached:

appAutoScroll, (IY + appFlags); default =0

TI-83 Plus Developer Guide Initial Release October 29, 1999

72

Chapter 2: T1 -83 Plus Specific Information

Echo characters to a RAM buffer:

textShadow is a RAM buffer of 128 bytes, one byte for each character
location. Character font codes will be written to this buffer as characters are
sent to the display. The location in the buffer written to is determined by the
location the character is placed in the display. This can be used to restore
display contents quickly when using Home Screen Display Mapping text
routines:

appTextSave , (IY + appFlags); default = 1

Preclear character space before writing a character:

This option is used when text is written to the same location alternating
between reverse/normal video:

preClrForMode , (IY + newDispF); default = 0

All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

Entry Points

PutMap Displays a single character without updated cursor position.

PutC Displays a single character and advances the cursor position.

PutS Displays a zero (0) terminated string stored in RAM and
updates the cursor position.

PutPS Displays a string stored in RAM with its length being the first
byte and updates the cursor position.

DispHL Displays the value stored in HL.

CIrTxtShd Clears the text shadow buffer.

EraseEOL Writes spaces from (curCol) to end of the line.

OutputExpr Positions the cursor and display a numeric value, a string, or
an equation.

PutTokString Displays a function token’s string.

Note: The VPutS and VPutSN routines can be used without first copying strings to RAM by

having a version of themselves place into the application. See Appendix A for the source
code to these routines.

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See Appendix A for more details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 73

e Pen Display Mapping

This mapping is based on individual pixel locations. It is used mainly in the graph
context for displaying text on a graph, but is also used in the statistics edit context to
display list elements. The display is mapped out to 64 rows of 96 pixels.

penCol
0 1 2 3 4 5 90 |91 | 92 [93 | 94 | 95
0
1
2
2
o
4
c
[}
o
62
63

Fig. 2.10: Pen Display Mapping
— Two bytes of RAM are used to position text written:
(penCal) = column coordinate (0 — 95d)
(penRow) = row coordinate (0 — 63d)

The pen location specified represents the upper left most pixel of the character
being displayed.

— Fonts
5 (width) x 7 (height) (pixels) large characters.
6/7 pixel high by variable-width small characters.
Application defined custom characters.

— Text formatting

Reverse video:
Display all text written in reverse video:

textinverse , (IY + textFlags); default =0

Write to Graph backup buffer:

The output can be directed to either the display, or the graph backup buffer,
plotSScreen .

textWrite , (IY + sGrFlags) = 1 to write to buffer; default = 0

TI-83 Plus Developer Guide Initial Release October 29, 1999

74

Chapter 2: T1 -83 Plus Specific Information

Use 5x7 large font:

The default is to use the small variable width font. Set the below flag to use
the large 5x7 font.

fracDrawLFont , (IY + fontFlags); default = 0

Erase the line below the character being displayed:

This applies to the small variable width font only. Do not set this flag if the
row of pixels below the character being displayed is off of the display.

textEraseBelow , (IY + textFlags); default = 0.

Display an application defined custom character:
This option is only used with the UserPutMap routine.
customFont , (IY + fontFlags)

All of these settings remain until you change them. Applications need to
manage their state, if they are changed.

Entry Points

VPutMap Displays either a small variable width or large 5x7 character

at the current pen location and updates penCol.

VPutS Displays a zero (0) terminated string, using either small or

large characters and updates pencCol.

VPUtSN Displays a string whose length is the first byte using either

small or large characters and updates penCol.

VPutBlank Displays a space character at the current pen location using

the small or large font and updates penCol.

DispOP1A Rounds a floating-point number to the current fix setting and

display it at the current pen location. Uses either the small or
large characters and updates pencCol.

SStringLength Returns the width in pixels of a string using the small font.

SFont_Len Returns the width in pixels of a character using the small
font.

UserPutMap Displays a character defined by an application at the current

pen location and updates penCol.

Note: The VPutS and VPutSN routines can be used without first copying strings to RAM by

having a version of themselves place into the application. See Appendix A for the
source code to these routines.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 75

Note: The space character for the small font is only one pixel wide. Applications may want to
use two space characters to separate words, in strings to be displayed using the small
font.

See the Display Utility Routines section.
See the Formatting Numeric Values for Display section.
See Appendix A for more details.

Formatting Numeric Values for Display

The following routines are used to convert RealObj (single floating-point) and CplxObj
(pair of floating-points) values into displayable strings. These routines do not display the

string.

Entry Points

FormReal

FormBase

FormEReal

FormDCplx

Converts a RealObj in OPL1 into a displayable string and specify the
maximum width allowed for the string. If the current mode setting is SCI
or ENG, the output string will reflect the setting. The value will be
Rounded based on the maximum width entered and the current FIX
setting.

Converts a RealObj in OP1 into a displayable string. Uses the current
mode settings SCI, ENG, NORMAL, and FIX settings to format the
string. The output can also be formatted as a fraction, or a degrees-
minutes-seconds (DMS) number. If a value cannot be represented in
the desired format, it defaults back to decimal.

Converts a RealObj in OPL1 into a displayable string and specify the
maximum width allowed for the string. All mode settings are ignored.

Converts a CplxObj value in OP1/OP2 into a displayable string. Uses
the current mode settings SCI, ENG, NORMAL, FIX setting, and
complex output settings a + bi and re” 0i to format the string. The
output can also be formatted as a fraction or a degrees-minutes-
seconds (DMS) number. If a value cannot be represented in the
desired format, it defaults back to decimal.

See Appendix A for further information.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

76

Chapter 2: T1 -83 Plus Specific Information

Modifying Display Format Settings
Resetting the next two flags signifies NORMAL mode setting.

fmtExponent, (fmtFlags) = 1 for scientific display mode
fmtEng, (IY + fmtFlags) = 1 for engineering display mode

fmtRect, (IY + numMode) = 1 rectangular complex display mode
fmtPolar, (IY + numMode) = 1 polar complex display mode

Fix setting:

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 -9 if a fix setting is specified

Writing Directly to the Display Driver

The display driver is a device that controls the display. The driver contains RAM that
represents what is currently being displayed. Commands are sent to the driver to
modify, or access what is displayed. The following is a brief description of the
commands that control the driver which is the Toshiba T6A04.

» Driver RAM
The RAM on the driver is mapped to a grid of 64 rows of 12 bytes. Each row
represents a row of pixels in the display with each byte representing eight pixels.

The addressing of the RAM is done by setting a row and column value to address a
particular byte. The addressing is built into the command used to set either a row or
column value. The figure below shows the command values used to set either a row
(X) or column (Y) value.

20h 21h Y Direction 2Bh

80h
81h
X
Direction
BFh

Fig. 2.11: Command Values

The first byte — row 80h and column 20h — represents the eight pixels in the first
row of the display’s left edge. The most significant bit of the byte is the left most
pixel.

» Sending Commands

The following areas must be considered when sending commands.

— Interrupts should be disabled to send commands/data to the driver.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

77

— Adelay is necessary before each communication with the driver. The following
routine should be added to an application and used.

lcd_busy:
PUSH
INC
DEC
POP
RET

AF
HL

HL

AF

— Communication is done with the drive through two 10 ports:

Icdinstport = 10h command port

Icddataport = 11h data port
— Addressing a byte of RAM

Row (X) addressing

Commands 80h to BFh —

rows.
Top Row
LD
CALL
ouT
Bottom Row
LD
CALL
ouT

Column (Y) addressing

Commands 20h to 2Bh —

First byte of row

LD
CALL
ouT

Last byte of row

LD
CALL
ouT

sets the row address to 0 — 63 or top to bottom

A,80h ; top row
lcd_busy
(Icdinstport),A

A,0BFh
lcd_busy
(Icdinstport),A

; last row

sets the column address to 0 — OCh.

A,20h ; first byte of row
lcd_busy
(Icdinstport),A

A,2Bh ; last byte of row
lcd_busy
(Icdinstport),A

TI-83 Plus Developer Guide

Initial Release October 29, 1999

78

Chapter 2: T1 -83 Plus Specific Information

— Setting auto addressing modes. The driver can act in four different ways after a

read or write.

Command 05h — X Direction auto increment
Command 07h — Y Direction auto increment
Command 04h — X Direction auto decrement
Command 06h — Y Direction auto decrement

The TI-83 Plus system expects the driver to be in X-increment mode and must
be set to this mode before giving control to the system.

Reading the Contents of the Display Driver RAM

CALL
IN

lcd_busy
A,(Icddataport)

; read disp byte that X and Y
; settings point to

Reading the Display Driver After Setting X or Y Coordinates

A dummy read needs to be done after setting either the x or y coordinate of the driver if
one wants to read from the driver. For example, read nine bytes of data from the display
starting in LCD row 5, column 1, to OP1.

Lp:

LD
CALL
ouT

LD
CALL
ouT

CALL
LD
ouT

LD
LD
CALL
IN

CALL
IN

LD
INC
DJINZ

LD
CALL
ouT

A,85h
lcd_Busy
(LcdInstPort),A

A,07h
lcd_Busy
(LcdinstPort),A

lcd_busy
A,21h
(LcdInstPort),A

B,9

HL,OP1

lcd_busy
A,(IlcdDataPort)

lcd_busy
A,(IlcddataPort)

(HL),A
HL
.Lp

A,05h
lcd_Busy
(LcdinstPort),A

Writing to the display driver RAM

CALL
ouT

lcd_busy
(Icddataport),A

;set Xtorow 5

; set Y auto increment mode

;setY to column 1

; number of bytes to read

; dummy read since we changed
; X, Y position

; read byte, auto increment Y

; set X auto increment mode

; write byte to disp

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

79

For example, write the contents of the graph backup buffer, plotSScreen , to the

display.

DI

LD
LD
LD
CALL
ouT
LD

, hew row

loopl:
PUSH
INC
LD
CALL
ouT
LD
CALL
ouT
LD

..loop2:
LD
INC
CALL
ouT
DJINZ

: row done

POP
LD
DJINZ

LD
CALL
ouT
El
RET

HL,plotSScreen
B,64

A,07h

lcd_busy
(Icdinstport),A
A7th

BC
A
(curXRow),A
lcd_busy
(Icdinstport),A
A,20h
lcd_busy
(Icdinstport),A
B,12

A,(HL)

HL

lcd_busy
(Icddataport),A
..loop2

BC
A, (curXRow)
..loop1

A,05h
lcd_busy
(Icdinstport),A

; setto y INC mode
; first row

; save number rows left to copy

; move to next row
, save new row

; set new x
; set to first column
: 12 columns
; get source

; write to disp

; get number rows left

; decrease number left, jump if
: not done

; set to x INC mode

TI-83 Plus Developer Guide

Initial Release October 29, 1999

80

Chapter 2: T1 -83 Plus Specific Information

Contrast Control

Adjusting the contrast setting of the display from an application can be done in two
ways.

* Executing the system GetKey routine will allow normal adjusting of the contrast by
the user, using the («] and (] keyboard keys.

» The display driver controls the contrast level of the display. Applications can send a
new contrast setting to the display driver.

Below is an example of how to send a contrast setting command to the display
driver.

; accumulator = valid contrast value 18h to 3Fh

; let us set the contrast to its darkest

LD A,3Fh

OR 0COh ; orin LCD contrast command
CALL lcd_busy ; delay for LCD driver

ouT (Icdinstport),A ; set contrast

RET

Note: Adjusting the contrast directly will not affect the systems contrast RAM value. The new
contrast setting will only be in effect temporarily. In order to make the new setting permanent
the systems contrast value must be updated. The system’s contrast value ranges from 0 to
27h, and is stored in RAM location (contrast). Display driver setting minus 18h = (contrast).

Split Screen Modes

The TI1-83 Plus has three mode settings that define the size of the display, Full screen,
Horizontal split and Graph-Table (vertical split). All of the system display writing and
graph utility routines adjust for the current split mode setting.

Applications need to be aware of the current split screen setting and take steps to
ensure that the current setting will not alter the intended output to the display.

Applications that do not intend to take advantage of a split screen have two ways to
avoid problems.

» Temporarily change the screen setting to full screen and then reset it. This option is
chosen if an application wants to retain the current split screen setting after
completion.

The current split screen settings are saved in some application defined RAM
locations (six bytes in length). Then the setting is changed to full screen mode. The
application must restore the original split screen settings back to the input state upon
completion. The following routines will save the current split screen setting and
restore it.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 81

setTofull:
LD HL,YOffset ; address of split
; attributes
LD DE,savevals ; app defined RAM
; location to save
LD BC,5 ; save first 5 bytes
LDIR ; save split
; attributes
LD A,(IY+sGrFlags) ; split flags ->
; ACC
LD (DE),A ; save split flags
:in6 " byte
RES grfSplit,(I'Y+sGrFlags)
RES vertSplit,(IY+sGrFlags) ; set flags to
; Full screen
B_CALL SetNorm_Vals ; screen attributes
; to full
SET grfSplitOverride,(IY+sGrFlags)
RET
rstrYOffset:
RES grfSplitOverride,(IY+sGrFlags)
LD DE,YOffset
LD HL,savevals
LD BC,5
LDIR ; restore input
: screen attributes
LD A,(HL) ; get input split
; flags
LD (IY+sGrFlags),A ; restore
RET

» Change the split screen mode to full screen mode without restoring it back to the
input setting.

B_CALL ForceFullScreen

Note: The B_CALL routine was not used in the first option above so that the graph would not be
marked dirty. If the split screen mode is not temporarily changed, the graph needs to be
marked as dirty so it will reflect the new screen size. Example one restores the input setting,
SO no regraph is necessary. It is entirely up to the application if causing the regraph is a
concern or not.

TI-83 Plus Developer Guide Initial Release October 29, 1999

82 Chapter 2: TI -83 Plus Specific Information

Graphing and Drawing — What's the difference?

Drawing

Routines include lines, circles, points, etc., which are defined by pixel coordinates.
Drawing routines cannot be defined with points outside of the physical display area.
Only pixel coordinates that exist can be used. The current WINDOW settings have no
affect on the drawing routine’s output. Inputs to routines are normally byte values.

Applications use drawing routines for general purpose drawing and animation. They are
easier to use and are more efficient than graphing routines that can generate the same
output. Drawing routines can also be used to annotate graphs generated by the systems
grapher.

Graphing

These routines include system grapher, lines, circles, points etc., which are all drawn
with respect to the current WINDOW settings, Xmin, Xmax, Ymin, and Ymax. These
settings define the boundaries of the display. Unlike drawing routines, graphing routines
can be defined with points that reside outside of the current WINDOW settings.

Graphing routines would be used by applications that want to annotate in a way that is
determined by the current WINDOW settings.

Graphing and Drawing Utility Routines

These routines could be useful to applications in combination with some of the graphing
and drawing routines. Detailed information for each of these routines can be found in

Appendix A.

BufClr Clears a RAM display buffer representing a bit image of the
display. Similar to GrBufClIr except the address of the RAM
display buffer is input.

BufCpy Displays a RAM display buffer representing a bit image of the
display. Similar to GrBufCpy except the address of the RAM
display buffer is input.

GrBufClr Clears the graph backup buffer, plotSScreen . The portion of the
buffer cleared is determined by the split mode setting.

GrBufCpy Displays the graph backup buffer, plotSScreen . The portion of the
buffer displayed is determined by the split mode setting.

CIrLCD Clears the display and the split screen setting is checked to
determine how much of the display to clear.

CIrLCDFull Clears the entire display ignoring the split screen setting.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 83

SaveScreen Copies a bit image of the current display to RAM.

Displaylmage Display a bit map image.

RunIndicOff Disables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

RunindicOn Enables the run indicator located in the upper right corner of the
display. See the Run Indicator section for further information.

AllEq Selects or deselects all graph equations in the current graph
mode

SetAllPlots Selects or deselects all statplots.

SetTblGraphDraw Sets the graph to dirty, which causes a complete regraph the
next time the graph is brought to the display.

Drawing Routine Specifics

The following sections cover drawing pixel coordinates, drawing to a split screen, and
drawing routines.

» Drawing pixel coordinates
The display is 96 pixels wide by 64 pixels high.

Fig. 2.12 shows the layout of the pixels along with the X and Y coordinate scheme
used by drawing routines.

X Coordinate
0 1 2 92 | 93 94 95
63
62
61
()
T
c
=
(@]
@]
@)
> 2
1
0

Fig. 2.12: Pixel Coordinates

Coordinates are input to drawing routines mainly in a register pair such as BC, where
BC = (X,Y) drawing pixel coordinate.

TI-83 Plus Developer Guide Initial Release October 29, 1999

84 Chapter 2: TI -83 Plus Specific Information

For example, the upper top left pixel in the display is drawing pixel coordinates
(0,63); (X,Y).

Note: The drawing routines, by default, DO NOT use the last row of pixels, Y = 0 and the last column of
pixels, X = 95. This is done to allow for an odd number of pixels for both the X and Y axes. This
restriction can be overridden thus allowing for the drawing routines to make use of the entire
display.

» Drawing in a split screen

If either Horizontal or Vertical (G-T) split screen is the current mode, the output from
the drawing routines will be affected. Listed below are the effects of each split mode.

Horizontal Valid Y pixel range = 1 — 31, where Y-pixel row 1 is moved up
32 rows from its normal position.

Vertical (G-T) Valid Y pixel range = 1 — 51, where Y-pixel row 1 is moved up
12 rows from its normal position.

Valid X pixel range = 0 — 31, with X-pixel column 0 in its original
position.

If split screen modes are not required by an application, it is recommended that all
drawing routines be performed with no split modes set. See the Split Screen section
for further information.

» System flags associated with drawing routines

The following flags are input by most of the drawing routines. The table gives an
overview of some the options available to applications. Appendix A contains further
information.

fullScrnDraw, (1Y + apiFlag4) 1 = allows draws to use column 95 and
row O.

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the
graph backup buffer plotSScreen .

1 = draws affect only the display.

bufferOnly, (IY + plotFlag3) 1 = draws affect the graph backup buffer
plotSScreen only.

» Drawing routines

The descriptions given below refer to affecting a pixel coordinate location in the
display, however the system flags above can be used to affect plotSScreen .
Appendix A contains further information.

IPoint Performs one of the following operations to a pixel coordinate point:
darken, lighten, reverse, test, or copy from plotSScreen to display.

PointOn Darkens a pixel coordinate point.

ILine Darkens or lightens a line between two pixel coordinate points.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 85

DarkLine Darkens a line between two pixel coordinate points.

PixelTest Tests a pixel coordinate in plotSScreen , to see if it is set.

GrphCirc Draws a circle, given the pixel coordinates, of the center and a point
on the circle.

IBounds Tests if a pixel coordinate lies within the graph window defined by
the current mode settings.

IBoundsFull Tests if a pixel coordinate lies within the full pixel range of the
display.

|Offset Given a pixel coordinate point, computes the offset to add to the
start address of the graph buffer to the byte in the buffer containing
that pixel.

Also returns the bit number in that byte for that pixel.

Additionally, computes the row and column commands to set the
LCD driver to the display byte for that pixel.

TI-83 Plus Developer Guide Initial Release October 29, 1999

86

Chapter 2: T1 -83 Plus Specific Information

Graphing Routine Specifics

The following section covers graph WINDOW settings, graphing in a split screen, and
graphing routines and system flags.

Graph WINDOW Settings

Fig. 2.13 below shows how the graph window is bounded by the current WINDOW
settings.

(Xmin, Ymax) (Xmax, Ymax)

(Xmin, Ymin) (Xmax, Ymin)
Fig. 2.13: Graph WINDOW Setting

Graphing routine parameters (points) can be defined outside of the WINDOW settings.
Those settings only define what is currently viewed in the display.

Graphing in a Split Screen

If either Horizontal or Vertical (G-T) split screen is the current mode, the graphing
routines will be limited to the section of the display designated for graphing by the mode
setting.

For more information about disabling any split screen, see the Split Screen section of
this document.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 87

Graphing Routines and System Flags

The graphing routines are grouped by common attributes into four groups. See
Appendix A for further information.

* Routines that do not automatically display or redraw the current graph screen. These
routines will draw over the existing contents of the display.

System flags

plotLoc, (IY + plotFlags) 0 = draws affect both the display and the Graph

backup buffer, plotSScreen.

1 = draws affect the display only.

bufferOnly, (IY + plotFlag3) 1 = draws affect the graph backup buffer

Entry Points
CPoint

CPointS

CLine

CLineS

UCLineS

DarkPnt

DrawCirc2

plotSScreen only.

Darkens, lightens, or reverses a graph coordinate point defined in
OP1/0OP2.

Darkens, lightens, or reverses a graph coordinate point defined in
FPS1/FPST.

Darkens a line between two graph coordinate points defined in
OP1/0OP2 and OP3/OP4.

Darkens a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

Erases a line between two graph coordinate points defined in
FPS3/FPS2 and FPS1/FPST.

Darkens a graph coordinate point defined in OP1/0OP2.

Draws a circle given the center, a graph coordinate point in
FPS2/FPS1, and the radius in FPST.

* Routines that will automatically display or redraw the current graph screen before
executing. If the graph does not need to be redrawn, the contents of the graph
backup buffer, plotSScreen , are copied to the display.

System flags

bufferOnly, (IY + plotFlag3) 1 = draws affect the graph backup buffer

Entry Points

Regraph

plotSScreen only.

Graphs any select equations in the current graph mode, and
also any selected statplots.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

88

Chapter 2: TI1 -83 Plus Specific Information

PDspGrph

PointCmd

LineCmd

UnLineCmd

DrawCmd

InvCmd

CircCmd

VertCmd
HorizCmd

Tests if the graph of the current mode needs to be redrawn. If
so, call the Regraph routine, otherwise copies plotSScreen to
the display.

Darkens, lightens, or reverses a graph coordinate point defined
in (FPS2, FPS1).

Darkens a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

Erases a line between two graph coordinate points defined in
(FPS3, FPS2) and (FPS1, FPST).

Graphs an equation variable in FPST.

Graphs an equation variable in FPST along the Y-axis instead
of the X-axis.

Draws a circle given the center, a graph coordinate point in
(FPS2, FPS1), and the radius in FPST.

Draws a vertical line at the X value in FPST.

Draws a horizontal line at the Y value in FPST.

« WINDOW zooming routines, which automatically display or redraw the current graph
screen, will not redraw after changing the window settings.

— Entry Points

Change the WINDOW settings such that:

ZooDefault

ZmFit
Zmint
ZmPrev
ZmSquare
ZmStats

ZmTrig

Zmusr

ZmDecml

The default settings are set, (-10,10) for both the X and Y
ranges.

All selected functions are fully visible in the display.

AX and AY = 1.0 given a new center (OP1, OP5).

The settings that were set before the latest zoom.

AX = AY, either the X ,or Y window settings are changed.
All selected statplots are fully visible in the display.

Appropriate for graphing trig functions dependent upon the
current trig mode.

The settings that were saved by the last ZoomSto executed.

(0,0) is in the center and AX and AY = .1.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 89

* Routines that change the current graph mode.

— Entry Points

SetFuncM Switches to function mode.
SetParM Switches to parametric mode.
SetPolM Switches to polar mode.
SetSeqM Switches to sequence mode.

Run (Busy) Indicator

The run indicator is used by the TI-83 Plus to indicate that the calculator is busy while
computing. It is normally turned off while waiting for input from a user. When an
application is first started, the run indicator will most likely be running.

Applications have the option of using the indicator or not.

The indicator is updated by the interrupt handler, so if it is to be used, interrupts need to
be enabled.

RunindicOff Disables the run indicator located in the upper right corner of the
display.

RunindicOn Enables the run indicator located in the upper right corner of the
display.
There are two choices for the appearance of the run indicator:

» A short solid line that circles around from top to bottom — this is the default
indicator.

* Along dashed line that circles around from top to bottom — this is the Pause
indicator for the TI-83 Plus.

To use the Pause indicator, execute the following code before turning the run indicator
on:

LD A,busyPause
LD (indicBusy),A

If the Pause indicator is used, an application needs to set the default indicator back:

LD A,busyNormal
LD (indicBusy),A

Example of common usage:

El

B_CALL RuniIndicOn ; indicator on
B_CALL GetKey ; wait for a key
B_CALL RunIndicOff ; indicator off

TI-83 Plus Developer Guide Initial Release October 29, 1999

90 Chapter 2: TI -83 Plus Specific Information

APD™ (Automatic Power Down ™)

Applications have the choice of allowing the APD feature of the TI-83 Plus to be active
or not. APD is implemented to preserve battery life by turning the calculator off after
about four minutes of inactivity. Unless an application’s functionality absolutely requires
that APD be disabled, it should be left active.

How does APD work?

Under normal system operation, the APD counter is reset after each key press. If no key
press is made in approximately four minutes, the calculator powers down.

Similar to the run indicator, the APD counter is updated by the interrupt handler;
therefore, interrupts must be enabled. When the APD counter is exhausted, the
calculator turns off. The interrupt handler routine is not exited.

The application is not notified that the calculator has been turned off. The contents of
the screen are saved in the 768 bytes of RAM located at saveSScreen , which is a bit
image representation of the screen.

When the calculator is turned back on, the screen is restored and the interrupt handler is
exited. Execution resumes at the location of the last interrupt before the calculator is
powered down. Applications should not be affected by this event in any way.

e Resetting the APD counter

This routine will reset the APD counter.
B_CALL ApdSetup

The GetKey routine will make a call to this routine upon entry.
e Disabling APD

There are two ways to disable APD and each have a specific situation in which they
should be used.

— Disable APD when calling the GetKey routine.
B_CALL DisableApd

This method of disabling the APD is a global, and will stay in effect after an
application exits. Applications need to re-enable the APD before exiting.

B_CALL EnableApd

— Disable APD while executing outside of the GetKey routine.
RES apdRunning,(lY+apdFlags)

APD will be disabled until this flag is set, or the GetKey routine is called.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 91

Link Port

Communications to and from the TI-83 Plus calculator is possible through the 1/0 port
using the unit-to-unit cable (included with the unit) or the graphic link cable (available as
an option).

Applications can use the link port for transferring data on two different levels.

» Using system routines that send/receive T1-83 Plus variables using the systems link
protocol. There are three system routines that are used:

AppGetCalc Retrieves a variable from a TI-83 Plus or TI-83 calculator.

AppGetCbl Retrieves a variable from a Calculator Based Laboratory™ (CBL™)
or Calculator Based Ranger™ (CBR™) device.

SendVarCmd Sends a variable to a CBL or CBR device.

The AppGetCalc and AppGetCbl routines will automatically replace existing
variable data if the variable received does exist already.

No error handler is needed to be placed around calls to these routines. If any error
occurs, a flag is returned to indicate that the link operation failed. Nothing more
specific about the error is known.

See Appendix A for more details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

92 Chapter 2: TI -83 Plus Specific Information

For example, assume that L1 contains a list to set up the CBR to continuously poll
for data using one of its probes, sends the list to the CBR, and polls it for data.

CALL I1name ;L1

RES onlinterrupt,(IY+onFlags) ; Clear break

B_CALL SendVarCmd ; send L1 to start up
; CBR

BIT comFailed,(lIY+getSendFlg) ; fail ?

RET NZ ; return if yes

; loop and read data into OP1

read_Loop:
CALL GetNewValue ; try to get another
; value
RET NZ : ret if link failed
CALL StoreData : store data somewhere
JR Read_Loop

; get from CBL into var L1 and recall to OP1

GetNewValue:

CALL |1lname L1
B_CALL AppGetChl ; get data
BIT comFailed,(IY+getSendFIg) ; fail ?

RET NZ ;yes

*RCL L1(1) -> OP1

; ACC =size of list, 1 = CBL, 2 =CBR

Rcl_new_val:

CALL I1lname

RST rFindSym ; look up L1 in symbol
; table

INC DE

INC DE ; move past size bytes

EX DE,HL ; HL = pointer to
; element 1

RST rMov9ToOP1 ; OP1 =val

RET

L1name:

LD HL,L1name

RST rMov9ToOP1 :OP1=L1name

RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 93

» Send and receive bytes of data directly through the port.

This operation involves the application interpreting the data sent and received in a
custom format. This type of communication is for applications that either interacts
with another TI-83 Plus or computer without using the built-in messaging protocol,
which is not documented in this developer’s guide.

The T1-83 Plus link port uses two data lines, DO and D1, for communicating. These
data lines are accessed through the B-port of the Z80.

— Bits 0 and 1 are for writing/reading data, DO = bit 0, D1 = bit 1.

For example, the following code shows all of the values that can be written to the

B-port.

LD A,DOLDI1L

ouT (bport),A ; is used for setting dO low, d1 low
LD A,DOLD1H

ouT (bport),A ; is used for setting dO low, d1 high
LD A,DOHDI1L

ouT (bport),A ; is used for setting dO high, d1 low
LD A,DOHD1H

ouT (bport),A ; is used for setting dO high, d1 high

Note: Data lines are high when not in use.

For example, the code below will poll the B-port until it detects some activity and
then examine which line has the activity.

IN A,(bport) ; poll the b-port

CP DOD1_bits ; any data line go low ?
JR Z,no_activity ; jump if no activity detected
cpP DOHD1L - is dO high ?

JR Z,d0_low ; yes,

; else d1 is high

TI-83 Plus Developer Guide Initial Release October 29, 1999

94 Chapter 2: TI -83 Plus Specific Information

The following systems routines are used for polling the link and sending/receiving a
byte of data.

ReclstByte Polls the link port for activity until either a byte is received, the
key is pressed, or an error occurs during communications.
The cursor will be turned on by this routine.

ReclstByteNC Polls the link port for activity until either a byte is received, the
key is pressed, or an error occurs during communications.
The cursor is not activated by this routine.

RecABytelO Attempts to read a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

SendAByte Attempts to send a byte of data. If no activity is detected in about
1.1 seconds, an error occurs.

An error handler should be set when using these routines. Each of these routines
will generate system errors.

See Appendix A for more details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 95

Example one:

The following routine is called to do a spot check of the link port for activity for a
single byte of data being sent.

— If no activity is detected or any error occurs during communication, then Z =0 is
returned.

— If activity is detected, then the signal is debounced to make sure it is not random
noise.

— The byte is then read and returned in the ACC with Z = 1.

haveiocmd: IN A, (bport) ; poll the port
AND DOD1_bits
cP DOD1_bits
JR Z,..noio ; jump if no activity
DI ; for speed
LD HL,ioData
LD (HL),A : save code
LD BC,15 : debounce counter
dblp1: IN A, (bport) ; poll again
AND DOD1_bits
CP (HL) ; still the same data?
JR NZ,..noio ; no, failed debounce
DEC BC ; dec counter
LD AC
OR B
JR NZ,dblpl ; jump if debounce not done
AppOnErr linkfail ; set error handler
SET indicOnly,(IY+indicFlags) ; no key scan
B_CALL RecABytelO ; read the byte
endexio: RES indicOnly,(IY+indicFlags)
LD (ioData),A ; save data
AppOSffErr ; remove error handler
LD A,DOHD1H
ouT (bport),A ; reset B-port
LD A,(ioData) ; get data byte
CP A ; Z = 1 for successful
El
RET
linkfail: LD A,DOHD1H
ouT (bport),A ; reset B-port
..noio: OR 1 ; Z = 0 for fail
El
RET

TI-83 Plus Developer Guide Initial Release October 29, 1999

96 Chapter 2: TI -83 Plus Specific Information

Example two:

In the following example, the routine in the above example is used to create a loop that
checks for key input and also for a one byte command to be sent over the link port.

10_Key_Lp:
RES indicOnly,(IY+indicFlags) ; key scan turned on
El
HALT ; low power sleep mode
B_CALL GetCSC ; check for Scan Code on
; wake up
CP skEnter ; jump if enter key
JR Z,HaveEnterKey
CALL havelOcmd ; check for link
JR NZ,..keylplst ; jump if no byte sent
JP LinkCmdSent ; link command received
GetCSC:
LD HL,kbdScanCode
DI ; interrupts off
LD A,(HL) ; get possible scan code
LD (HL),0 ; Clear out for next scan
RES kbdSCR,(IY+kbdFlags) ; needed for key scan to work
El ; interrupts on
RET

Example three:

This sample routine will attempt to send the register pair HL over the link port. RET
Z =1 if successful, else Z = 0.

sendHl:
LD AH ; send H first
PUSH HL ; save L
CALL sendbyte ; send to other side
POP HL
RET Nz ; return if failed
LD AL ; time to send L
sendbyte:
DI
PUSH AF
LD A,DOHD1H ; set both data lines to high,
; free
ouT (bport),A
POP AF
SET indicOnly,(IY+indicFlags)
AppOnErr linkfail ; See Example 1
B_CALL SendAByte ; system routine to send byte
JR endexio ; See Example 1

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 97

TOOLS AND UTILITIES LAYER

Error Handlers

Error exception handlers can be set up to capture any system error that occurs while
executing a block of code that an error handler is placed Around.

« A macro is used to install the error handler:

AppONErr Label

If your assembler does not support macros, use the following code:
LD HL,Label
CALL APP_PUSH_ERRORH

— Label = Location that the Program Counter (PC) is set to if a system error
occurs.

— All registers are destroyed, except the Accumulator.

— Six pushes are made onto the stack. Make sure all the information that is
needed from the stack is removed before installing the error handler.

« A macro is also used to remove the error handler:
AppOffErr

If your assembler does not support macros, use the following code:
CALL APP_POP_ERRORH

The above is used when the error handler is no longer needed and no system error
has occurred.

The Stack Pointer (SP) must be at the level it was at immediately following the
AppOnErr. Do not call a routine to set the error handler and then remove it outside of
that routine.

» If an error occurs while the handler is place:

— The system restores the SP, the Floating Point Stack, and the Operator Stack
back to their levels when the handler was initiated.

— The error handler is removed from the stack.

— The PC is set to the Label specified when the handler was initiated and
execution begins there. The Accumulator contains the error code for the error
that tripped the handler.

TI-83 Plus Developer Guide Initial Release October 29, 1999

98 Chapter 2: TI -83 Plus Specific Information

— At this point, the Application can:
Ignore the error.
Display its own error message.
Do some clean up and let the system report the error.

Modify the error code to remove the GoTo option and have the system report
the error with only a Quit option.

Example one:

Do not allow the error to be reported by the TI-83 Plus. Compute 1/X and return CA =0
if no error, otherwise return CA = 1.

AppOnErr My_Err_handle

B_CALL RelX : OP1 = (X)
B_CALL FPRecip : 1/0P1,

; If no error then returns from the call

AppOffErr ; remove the error handler
OR A ; CA =0 for no error
RET

; control comes here if X = 0 and generates an error

My_Err_handle:
SCF ; CA =1 for error
RET

Example two:

Allow the error to be reported by the TI-83 Plus, but remove the GoTo option.
Compute 1/X.

AppOnErr My_Err_handle

B_CALL RelX : OP1 = (X)
B_CALL FPRecip : 1/0P1,

; If no error then returns from the call

AppOffErr ; remove the error handler
RET

; control comes here if X = 0 and generates an error, ACC = error code

My_Err_handle:

RES 7,A : bit 7 of error code controls GoTo
; option
B_JUMP JError ; trip the error with no GoTo option

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

99

Nested Error Handlers

Error handlers can be nested inside of each other. The last error handler initiated will be
notified of any error that occurs. When the first handler is notified of the error, none of
the previous handlers initiated are notified. If the handler ignores the error or handles it
on its own, execution continues on with the other handlers still installed.

If that first error handler B_JUMPS back to the system error handler, (JError or
JErrorNo), the error handler that was initiated before the one that was just tripped is

now tripped itself.

Fig. 2.14 below shows the flow of the error with three nested error handlers initiated.

An error occurs

h 4

TI-83 Plus System Error Handler

1. The System Error Handler sends the error to Handler # 3

2. Handler # 3 sends the error back to the System Error Handler

3. The System Error Handler sends the error to Handler # 2

4. Handler # 2 sends the error to the System Error Handler

5. The System Error Handler sends the error to Handler # 1

A A
Step 1 Step 2 Step 3 Step 4 Step 5
v A 4 \ 4

Handler # 3 initiated last Handler # 2 initiated last
Notified of error first Notified of error second
Sends error back to the Sends error back to the Handles the error on
System Error Handler System Error Handler its own

Fig. 2.14: Error Flow

Handler # 1 initiated last

Notified of error third

See Appendix A for details on the JError and JErrorNo routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

100

Chapter 2: TI1 -83 Plus Specific Information

Utility Routines

The following is information on the floating-point, complex number, and other math

routines.

Floating-Point Math

» All of the floating-point math routine arguments are input in OP1 or OP1/OP2, and
output in OP1, unless noted below.

» Errors can be generated by the math routines. See the Error Handlers section.

» All of the inputs to these routines are floating-point numbers.

» See Appendix A, entry points UnOPExec and BinOPExec to access this
functionality with arguments other than floating-point numbers.

Routine Function

FPAdd OP1 plus OP2
FPSub OP1 minus OP2
FPRecip 1 divided by OP1
FPMult OP1 times OP2
FPDiv OPL1 divided by OP2
FPSquare OP1 times OP1
SgRoot Square (OP1)
Plusl OP1lplus 1
Minusl1 OP1 minus 1
InvSub OP2 minus OP1
Times2 OPL1 plus OP1
TimesPt5 OP1 times .5
AbsO1PAbsO2 |OP1] plus |OP2]
Factorial (OP1)!

Table 2.17: Floating-Point Basic Math Functions

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information

101

Routine Function
Sin Sin(OP1)
Cos Cos)OP1)
Tan Tan(OP1)
SinCosRad OP1 = Sin(OP1) and OP2 = Cos(OP1) force radian mode on input
ASin inv Sin(OP1)
ACos inv Cos(OP1)
ATan inv Tan(OP1)
ASinRad inv Sin(OP1) force answer in radians
ATanRad inv Tan(OP1) force answer in radians
DToR OP1 degrees to radians
RToD OPL1 radians to degrees
SinH SinH(OP1)
CosH CosH(OP1)
TanH TanH(OP1)
SinCosHRad | OP1 = SinH(OP1) and OP2 = CosH(OP1)
ASinH inv SinH(OP1)
ACosH inv CosH(OP1)
ATanH inv TanH(OP1)
Table 2.18: Trigonometric and Hyperbolic Functions
Routine Function
YToX OP17MOP2
XRootY OP17(1 divided by OP2)
Cube OP173
EToX e"OP1
TenX 10"OP1
LnX In(OP1)
LogX log(OP1)

Table 2.19: Floating-Point Power and Logarithmic Math Functions

TI-83 Plus Developer Guide

Initial Release October 29, 1999

102 Chapter 2: TI -83 Plus Specific Information

Routine Function

Max Max(OP1, OP2)

Min Min(OP1, OP2)

Ceiling Intgr(negative OP1)

Int Int(OP1)

Intgr Intgr(OP1)

Trunc integer part(OP1)

Frac fractional part(OP1)

CpOP10OP2 | non-destructive compare OP1 and OP2
Round generic Round(OP1)

RndGuard Round(OP1) to 10 digits

RnFx Round to current fix setting

Random generate random floating-point number
Randint Generate a random integer between OP1 and OP2

Table 2.20: Floating-Point Miscellaneous Math Functions
Miscellaneous Math Functions

Floating-Point Math Functions that Output Complex Results

The TI1-83 Plus has two complex math modes, a + bi and re”6l, that allow complex
numbers to be generated by functions that take RealObj data type (floating-point) as
input. If neither of these modes is set, then these functions will generate an error when
the arguments input would produce a complex result. These functions include LnX,
LogX, SgRoot, YToX and XRootY.

To have these routines return complex results for real data type inputs:

» set one of the complex modes:

— fmtRect, (IY + numMode) rectangular complex
— fmtPolar, (IY + numMode) polar complex

* reset

— fmtReal, (IY + numMode) real output only

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: Tl -83 Plus Specific Information

103

» The floating-point math routines described in the previous sections will always return
an error when the result is a complex number. To have floating-point math routines
return the complex result, the routines described in Other Math Functions need to be

used.

Note: You do not need to change the mode to complex in order to use the complex functions with
complex inputs. This is only done to get complex results when inputs are of the RealObj type.

Complex Math

» Complex numbers are composed of pairs of floating-point numbers.

» Complex number math routine arguments are input in OP1/OP2 or OP1/OP2 and
FPS1/FPST, and the results are returned in OP1/OP2 or OP1. See Floating Point

Stack section.

» Errors can be generated by the math routines. See the Error Handlers section.

» See Appendix A, entry points UnOPExec and BinOPExec , to access this
functionality with arguments other than complex numbers only.

Routine Function

CAdd FPS1/FPST plus OP1/OP2
CSub FPS1/FPST minus OP1/OP2
CRecip (OP1/OP2)™ negative 1

CMult FPS1/FPST times OP1/OP2
CDiv FPS1/FPST divided by OP1/0P2
CSquare OP1/OP2 times OP1/0OP2
CSgRoot Square (OP1/0OP2)

CMItByReal OP1/0OP2 times OP3
CDivByReal OP1/OP2 divided by OP3

Table 2.21: Complex Math Basic Math Functions

TI-83 Plus Developer Guide

Initial Release October 29, 1999

104

Chapter 2: T1 -83 Plus Specific Information

Routine Function

CYtoX FPS1/FPSTAOP1/0OP2

CXrootY FPS1/FPSTA((OP1/OP2)" negative 1)
CEtoX e"(OP1/OP2)

CTenX 10N (OP1/0P2)

CLN LN(OP1/OP2)

ClLog log(OP1/0OP2)

Table 2.22: Complex Math Power and Logarithmic Math Functions

Routine Function

CAbs OP1 = abs(OP1/0OP2)

Conj Conj(OP1/0OP2)

Angle OP1 = Angle(OP1/0OP2)

Cintgr Intgr(OP1/0OP2)

CTrunc integer part(OP1/0OP2)

CFrac fractional part(OP1/OP2)

RToP (OP1/0OP2) rect to polar

PtoR (OP1/0OP2) polar to rect

ATan2 OP1 — ATan2(OP1/0OP2) where OP1 = imaginary part,
OP2 = real part of complex

ATan2Rad | Same as ATan2 except force results to radian mode

Table 2.23: Complex Math Miscellaneous Math Functions

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 105

Other Math Functions

This section covers math functions with data types other than RealObj and CpIxObj. It
also covers accessing math functions not listed in the above sections.

Many of the functions in the previous two sections can also be used with arguments
other than RealObj and CpIxObj. For example

Sin(L1) Sine of list L1
4 % [A] 4 times matrix [A]
(1,2) +L3 complex number (1,2) + list L3

The problem is the entry points that execute the above functions only use RealObj and
CplIxObj arguments as inputs/outputs. There are two solutions to this problem:

» An application could use these entry points to produce results for arguments that are
lists or matrices by doing the element-by-element operations on the input. This
approach is not recommended.

» Execute these functions with mixed arguments using the system’s executor context.

The systems executor is used during parsing (see the next section for details) to
generate results. The executor is partitioned by the number of arguments that a
function takes as inputs. The routines used include:

UnOPExec Executes functions with one argument.

BinOPExec Executes functions with two arguments.

ThreeExec Executes functions with three arguments.
FourExec Executes functions with four arguments.
FiveExec Executes functions with five arguments.

Input to each of the above routines is a function to be executed along with the
argument(s) to be input to the function.

See Appendix A for a complete list of what functions can be executed through the
executor, and also for more details on the inputs/outputs requirements.

Results from these routines may be stored in Temporary Variables. See to the
Temporary Variables Returned from the Parser section for additional details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

106 Chapter 2: TI -83 Plus Specific Information

Function Evaluation

Applications may need to evaluate (parse in TI-83 Plus terminology) functions
(equations). Using the TI-83 Plus, equations can only contain functions that return
values. Programming commands and other commands that do not return a result to Ans
are not valid in expressions, and therefore can only be executed from a program
variable. See the TI-83 Plus Graphing Calculator Guidebook for more information.

Parsing an equation is done to return the value of the equation with the current value of
the variables that are contained in it.

Equations can only be parsed if they are stored in an equation variable, an EquObj data
type — for example Y1, Xt1, or a temporary equation variable.

Errors can be generated during parsing. If this occurs, the system error context will take
over and in most cases, cause the application to be shut down. Applications should
install error handlers before parsing equations in order to stop the system error context
from activating.

See the Error Handling section in this chapter for further information.

Parse Routine
Parselnp — executes an equation or program stored in a variable.
* Inputs: OP1 equals the name of equation to parse

» Outputs: OP1 equals the result if no error was reported. The output can be any
numeric data type including strings. If the result returned from the parser is:

— RealObj then OP1 equals the result — a floating-point number.
— CplxObj then OP1/OP2 equals the result — two floating-points numbers.

— ListObj, CListObj, MatObij, or StrngObj then the name of a variable that contains
the result data is returned in OP1, a temporary system variable. Use of
temporary variables returned by the parser will be explained later in this section.

e The parser can create temporary variables even if a temporary variable is not
returned as the result.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 107

For example, parse the graph equation Y1 and store the answer in Y. Install an error
handler around the parsing and the storing routine to catch any errors. RET CA =0 if
OK, elseret CA = 1.

LD HL,y1Name
RST rMov9ToOP1 ; OP1 =Y1 name
AppOnErr ErrorHan ; error handler installed
B_CALL Parselnp ; parse the equation

; returns if no error

B_CALL CkOP1Real ; check if RealObj
JR Z,storit ; if a RealObj, try to store to Y
AppOffErr ; remove the error handler

; come here if any error was detected
: error handler is removed when the error occurred

ErrorHan:

B_CALL CleanAll ; remove temps if any
SCF ; set CA flag to signal failure
RET
storit:
B_CALL StoY ; store to Y, ret if no error, else
; ErrorHan
AppOffErr ; remove error handler
B_CALL CleanAll ; remove temps if any
CP A ; CA =0 for no error
RET
YName: DB EquObj, tvarEqu, tY1, O

TI-83 Plus Developer Guide Initial Release October 29, 1999

108 Chapter 2: TI -83 Plus Specific Information

Temporary Variables

The parser can return results that cannot be fully contained in the OP registers due to
their size. In these cases, the parser needs to return the result stored in a temporary
variable. Temporary variables can also be created by parsing and not be returned as
results (see the CleanAll routine in the following section).

A temporary variable is like any other user variable that can be created. They reduce
free memory available and have Symbol Table entries. Temporary variables exist for the
following data types:

ListObj CListObj MatObj StrngObj EquObj

Temporary variables are assigned unique names at the time that they are created. The
first character of a temporary variable name is the $, followed by a two-byte counter,
Least Significant Byte (LSB), Most Significant Byte (MSB). The counter is used to create
the unique names. For example, if the fifth temporary variable is a list, it would be:

OP1 +1 +2 +3 +4 |+5 | +6 |[+7 [+8

Listobj | $ 2 |2 |2 |2 |2
0lh | 24h | 04h | 0Oh

Table 2.24: Temporary Variables Example

(pTempCnt) is a two-byte counter in RAM that the system uses to generate the next
temporary variable. This allows for up to 64K unique temporary variables.

The (pTempCnt) counter is initialized to 0000h and is incremented after each new
temporary variable is created. This counter needs to be managed properly when using
temporary variable. It needs to be completely or partially reset periodically in order to
keep temporary variable usage available. The Managing Temporary Variables section
provides additional details.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 109

Fig. 2.15 illustrates the location in RAM the temporary information is stored.

Addr
8000h
System RAM
(Fixed Size)
User RAM l
(Grows Up)

The data area for temporary variables is
/ located between User Memory (user data
storage) and the Floating Point Stack. It is

Temporary RAM deliberately separated from user data so
(Grows Up) l that all of the temporary data area can be

deleted with no effect on user data storage.

The first byte of temporary storage is at
Floating Point Stack l address (TempMem) and the last byte is at

(Grows Up) (FPbase) - 1.
Free RAM
The symbol table entries
Operator Stack T / for temporary variables
(Grows Down) / . are separated from all of
Temporary Variable the other entries. The first
Symbol Table Symbol Table byte of the temporary
(GrOWS Down) symbol table is at (Ptemp)
\ and the last byte is at
Hardware Stack User Symbol Table (Opbase) + 1.
(Fixed Size) —

Fig. 2.15: T1-83 Plus System RAM

Using Temporary Variables

Temporary variables can be used the in the same manner as any user variable. They
can be modified, resized, used to store in to a user variable, and input to system
routines.

These variables are called temporary as they are not intended for long term use. Their
main purpose is to provide a way to hold onto intermediate results dynamically as the
results are needed. Temporary variables should be freed up as soon as they are no
longer needed. Some system routines will automatically free up temporary variables if
they are used as inputs (this information is noted in the Appendix A entry point
documentation).

Managing Temporary Variables

The life span of a temporary variable is determined by the application. Once a
temporary variable is no longer needed, it can be marked dirty by the application.
Marking a temporary variable dirty identifies it for deletion. Deleting the temporary
variable frees the RAM space it occupied.

This marking scheme is used to save time while parsing an equation. The
parser/executor does not use time deleting temporary variable — it only marks the
temporary variable for deletion after the variable is no longer needed.

TI-83 Plus Developer Guide Initial Release October 29, 1999

110 Chapter 2: TI -83 Plus Specific Information

Every time a temporary variable is needed, a check if made for available RAM. If there
is not enough free RAM, the temporary variables that are marked dirty are deleted one
at a time until enough RAM has been freed. If enough RAM were free at the start of
parsing, then in most cases, none of these deletions would take place.

A temporary variable is marked dirty by setting bit seven of the temporary variable’s sign
byte located in its Symbol Table entry. For example, if OP1 equals the name of a
temporary variable to mark dirty:

MarkTemp:
B_CALL ChkFindSym ; look up temp

; HL = pointer to Symbol Table entry

SET 7,(HL) ; mark dirty
RET

Deleting Temps and Setting (pTempCnt)
There are five different ways that temporary variables are deleted.

» Quitting the application and returning to the screen — This will delete all temporary
variables and reset (pTempCnt) equal to 0000h

» System error context is started — This will delete all temporary variables and reset
(pTempCnt) equal to 0000h

» System routine EnoughMem — This routine is used to check if a certain amount of
RAM is free. If the requested amount is not free, this routine will delete dirty
temporary variables until either no more dirty temps exist, or the requested amount
of RAM is available due to temporary variable deletions. (pTempCnt) is not affected.

» System Routine FixTempCnt — This routine is used to delete all temporary
variables with a name that contains a counter value equal to DE.

The parser uses this routine in its handling of temporary variables when parsing a
program or the home screen entry.

Before each line of the program is parsed, the current value of (pTempCnt) is saved.
This value is used to create the next temporary variable needed.

After parsing each line of the program, the resulting value, if one, is stored into the
Ans variable. Once the result is stored into Ans, there can be no other temporary
variable that may have been created during the parsing of the line that are still
needed.

Calling FixTempCnt with DE equal to save pTempCnt, will delete all temporary
variables created by the last line parsed. The value (pTempCnt) is reset back to the
value saved before the line was parser, DE.

» System Routine CleanAll — This routine is used when the error context is started, or
control is returned to the home screen. This will delete all temporary variables and
reset (pTempCnt) equal to 0000h.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 111

What should applications do?

Most applications should be able to use the CleanAll routine to manage temporary
variables. Applications should make a call to the CleanAll routine as soon as all
temporary variables in use are no longer needed. This is especially important if
temporary variables are going to be created in a looping environment. If the temporary
variables are not cleaned before the loop is restarted, RAM will become full.

If some temporary variables are needed to be kept alive for extended periods of time,
make sure that any other temporary variables that may be created by the application, or
returned from the parser, are at least marked dirty when they are no longer needed.
That way, the RAM they take up can be reused if needed.

It is also good a good practice to try and use the Ans variable instead of temporary
variable. The StoOther routine can be used to store to the Ans variable.

TI-83 Plus Developer Guide Initial Release October 29, 1999

112 Chapter 2: TI -83 Plus Specific Information

Working with Tl Language Localization Applications

Tl has made available applications that change the language used for functions
commands and strings, from English to an alternate language. Applications can take
advantage of the language setting by being able to modify their output to match the
current language setting, if desired. The language setting is stored in two bytes of RAM.
The table below matches each language with their corresponding values.

The values are store in RAM locations localLanguage and localLanguage+1.

Language Main language Sub Language

English LANG_ENGLISH SUBLANG_ENGLISH
Danish LANG_DANISH SUBLANG_NEUTRAL
Dutch LANG_DUTCH SUBLANG_DUTCH
Finnish LANG_FINNISH SUBLANG_NEUTRAL
French LANG_FRENCH SUBLANG_FRENCH
German LANG_GERMAN SUBLANG_GERMAN
Hungarian LANG_HUNGARIAN SUBLANG_NEUTRAL
Italian LANG_ITALIAN SUBLANG_ITALIAN
Norwegian LANG_NORWEGIAN SUBLANG_NEUTRAL
Polish LANG_POLISH SUBLANG_NEUTRAL
Portuguese LANG_PORTUGUESE SUBLANG_PORTUGUESE
Spanish LANG_SPANISH SUBLANG_SPANISH
Swedish LANG_SWEDISH SUBLANG_NEUTRAL

Table 2.25: Language Table

For example, check if the current language is Spanish:

LD HL,(localLanguage) ; H = sublang,
;L =main

LD DE,LANG_SPANISH + 256*SUBLANG_SPANISH

B_CALL CpHLDE ;compare, Z=1
; if Spanish

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 113

Entering and Exiting an Application Properly

The state monitor passes control to the TI-83 Plus application loader which sets the
monitor’s control vectors for key presses, partial put aways, full put aways, window
resizing, redisplay, and error.

TI-83
State Monitor

TI-83
Application
Loader

Application

Fig. 2.16: Control Flow

The application now has three choices in which type of environment it will run in —
Stand-alone, Stand-alone with Put Away notification, and Monitor driven (not covered in
this release)

Stand-alone

The application handles all key inputs itself and does not need access to the TI-83 Plus
menu system.

The application will also not be notified if the user turns the unit off. This means that no
data, not already saved in a variable, will be lost when the unit turns off. The application
is terminated with no notice.

Note: Turning off can occur only if the GetKey routine is used directly by an application, or if a system
routine called by the application uses GetKey .

The application terminates without notice if link activity is detected while waiting for a
key.

Start-up Code

No special code is hecessary at the start of execution.

TI-83 Plus Developer Guide Initial Release October 29, 1999

114 Chapter 2: TI -83 Plus Specific Information

Exit Code

The application wants to terminate and return to normal TI-83 Plus operations. Some of
the calls in this sequence are not always needed — see the comments.

The following sequence exits the application cleanly even if the hardware stack is not at
the same level upon entry to the application. The stack is reset by the system.

ExitCode:
LD (Iy+textFlags),0 ; reset text flags

; This next call is done only if application used the Graph Backup Buffer

B_CALL SetThlGraphDraw
B_CALL ReloadAppEntryVecs ; make sure Application Loader set
B_JUMP JForceCmdNoChar ; force to home screen

Fig. 2.27 shows the sequence of events once the application executes the B_JUMP to
JForceCmdNoChar instruction.

Application
B_JUMP to ForceCmdNoChar

Monitor
Reset stack and informs monitor
to switch to home screen

Monitor
Informs Application Loader
to close

Application Loader
Cleans up

Monitor
Control to Home screen

Home screen
Starts up

Fig. 2.17: Event Sequence

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 115

Stand-alone with Put Away Notification

An application can be notified when the monitor wants the application to terminate.

Terminating events include: turning off, a system error was generated and the user
chose the quit option, and silent link was activated and closed the application. All of
these events are detected while waiting for a key press in the GetKey routine.

An application would want to be notified for a variety of reasons.

» An application needs to save its state before being closed down so that the next time
it is run it can restore the state it was last in.

* An application may want to delete some variables it has created for temporary use
while executing.

» An application may have an edit open that it needs to take care of.

* An application may want to inform the user of some options that are available when
being shut down.

» An application may have modified some system flags that need to be set back to
their normal state such as disabling APD or enabling lower case alpha entry.

Note: The Put Away cannot be stopped by the application. Once notified by the monitor, the application
must terminate.

How is the application notified?

If an application needs to be notified when it is being closed down by the system, it must
change the system monitor vectors.

Only applications that are extensively integrated with the TI-83 Plus system need to use
the monitor. These types of applications are currently not fully supported by this
document. However, the level of support provided allows the application to receive
notification of the application being shut down.

The monitor vectors control the flow of information to the context that is in control at a
given time. A context loads the monitor vectors with pointers to its handling routines.
Information that is sent out by the system monitor include key presses, partial put
aways, full put aways, window size changes, and error recovery. Normally there is a
separate handler for each of these events.

TI-83 Plus Developer Guide Initial Release October 29, 1999

116 Chapter 2: TI -83 Plus Specific Information

When an application is executing, the current context in control is the Application Loader
as noted in the figure below.

The application to be executed is
chosen by the user from the
calculator APPS menu.

!

The State Monitor initiates the
Application Loader context.

!

The Application Loader loads the
State Monitor vectors to receive all
information from the state monitor.

i At this point the application is
The Application Loader jumps to the executing under the stand-alone
application for execution. The situation described in the previous
application is ready for stand-alone section. No notification of
execution. termination will be received.

Fig. 2.18: Application Loader Process

An application must change the monitor vectors so that any information sent by the
monitor, is sent directly to the application.

Start-up Code

These lines of code must be at the beginning of the application.

LD HL,AppVectors
B_CALL Applnit ; Apps monitor control vectors written

; all of the vectors are set to a ‘RET’ instruction in the App except
; for the ‘Put Away’ vector which is set to the routine to handle the
; Put Away in the App.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 2: TI -83 Plus Specific Information 117

This is the rest of the application code.

Dummy:
RET

; Table of vectors loaded into monitor control vectors

AppVectors:

DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy ; set this vector to a ‘RET’ instruction
DW AppPutaway ; set this vector to Apps Put Away
; routine

DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy ; set this vector to a ‘RET’ instruction
DW Dummy : set this vector to a ‘RET’ instruction
DB appTextSaveF ; system flag, this is a normal setting

Now the application is connected to the system monitor through the system monitor
vectors. If the monitor were allowed to be in control then all of the information it sends to
the system would come to the application.

Since the monitor is not in control, information will be sent to the application under three
circumstances.

* While GetKey is executing the TI-83 Plus is turned off.
» While GetKey link activity is detected.

» If a system error is generated and allowed to be displayed, the Quit option is chosen
by the user.

In all three circumstances, the system monitor will jump to the application at the label
AppPutAway, or whatever label is used in the AppVectors table.

Sample code to handle the apps termination is given. The turning off situation is handled
differently than the other two.

TI-83 Plus Developer Guide Initial Release October 29, 1999

118 Chapter 2: TI -83 Plus Specific Information

Put Away Code

This code should not be used when the application terminates on its own. An application
should follow the Stand-alone example to exit without the monitor initiating the
termination.

AppPutAway:

; Application gets itself ready for terminating by cleaning any system flags
; Or saving any information it needs to.

; This next call resets the monitor control vectors back to the App Loader

B_CALL ReloadAppEntryVecs ; App Loader in control of
; monitor
LD (IY+textFlags),0 ; reset text flags

; This next call is done only if application used the Graph Backup Buffer

B_CALL SetTblGraphDraw

; Need to check if turning off or not, the following flag is set when

; turning off:
BIT monAbandon,(lY+monFlags) ; turning off ?
JR NZ,..TurnOff ; jump if yes

; if not turning off then force control back to the home screen

; note : this will terminate the link activity that caused the application
; to be terminated.

B_JUMP JForceCmdNoChar ; force to home screen
.. TurnOff:
B_JUMP Putaway ; force App loader to do its
; put away

TI-83 Plus Developer Guide Initial Release October 29, 1999

Application Development
Process

The following chart provides an overview of the steps necessary to create a TI-83 Plus
application. A simple application is used to walk you through the detailed steps. Use the
chart as a general guide. This process assumes that you are running Windows 95
operating system and that you have access to a text editor such as Notepad.

@_» Text Editor Scripting
(Notepad, etc.) Utilities

Source .
File (.asm)

Header
Utility

Assembler
Source Object
file (.obj)

\ 4

Library
Header Files I

Link Library
Description Object Files II

Develop Key
(key)

Linker

Site Testing Site Testing?
.) ite Testing? Distribution
Application hex Distribution? Texas
Sign Debug? Instruments

v

Signed Applet

(-app)

Tl Tl
Calc Calc
Dev Prod
Calc Calc

Fig. 3.1: Application Development Flow

TI-83 Plus Developer Guide Initial Release October 29, 1999

120 Chapter 3: Application Development Process

PROGRAMMING LAYER

Chapter 2 covered the Hardware layer, the Driver layer, and the Tools and Utilities layer.
The final layer in the TI-83 Plus architecture is the Programming layer.

There are three kinds of programs that can be created for the TI-83 Plus: TI-BASIC
programs, ASM programs, and Applications. This chapter is primarily concerned with
applications. In the following discussion, Z80 refers to the type of microprocessor used
by the TI-83 and TI-83 Plus.

TI-BASIC Programs

These programs were available on the TI-83 and may be known as scripts or keystroke
programs. These programs are created using the PC program TI-GRAPH LINK™ for
TI1-83 Plus or directly on the calculator using the [PRGM] New [1:Create New] options.
The details for creating this kind of program are provided in the T/-83 Plus Guidebook.
These programs consist of commands that mimic the calculator keystroke commands,
plus some additional keywords for control-flow logic. These programs are loaded into,
and run from, the calculator RAM. There must be sufficient free RAM available in order
to be able to load a TI-BASIC program. This language is interpreted, so these programs
do not have to be assembled or compiled before you run them on the calculator.
Interpreting the programs, however, causes them to be relatively slow. When these
programs execute, if they contain an illegal statement or perform an illegal operation,
the interpreter stops the program and displays an error message. The calculator
functions normally after such an error.

ASM Programs

ASM programs were available on the TI-83 and may be known as assembly programs
or ASAPs. These programs are written in Z80 assembly language and then adapted to
use the calculator’s pre-existing ability to run TI-BASIC programs. After the ASM
program is assembled, it is converted to a readable text format that can then be
downloaded to the calculator in the same way as a TI-BASIC program. A special
keyword at the start of the program tells the calculator interpreter that it is an ASM
program instead of a normal TI-BASIC program. The interpreter then converts the
program into Z80 machine language and gives it control of the processor. Since these
programs have total control over the calculator, they are fast, but any programming
errors can be serious, causing the calculator to become unusable until reset. These
programs are able to call built-in calculator routines. They run in RAM and are limited in
size to 8K.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 121

Applications

Applications, or apps, are assembly language programs. These programs are different
from ASM programs primarily in that they are stored in and run from the Flash ROM,
where they are not likely to be erased, and they take no RAM space. Applications only
need RAM for any variables they might create. Apps have access to all the same
system routines as ASM programs and they can be much larger than ASM programs.
Apps must be created on a PC. They have special requirements on content and linking.
They must be digitally signed by Tl if they are to be distributed. Additionally, a user
calculator must have an internal digital certificate in order for the app to run. This is not
true if the app is freeware or shareware.

ASM versus Applications

Assembly programs written to be ASM programs must be modified in order to function
correctly as Applications. The major difference is that ASM programs run from RAM, but
Applications run from Flash ROM. Therefore, applications cannot be self-modifying,
whereas ASMs can. Applications also need additional identification code at the start of
the program. They need additional code to handle errors and exceptional events. And,
they must be digitally signed by TI if they are to be distributed.

DEVELOPMENT SYSTEM

The simulator is for general development use and the steps for setting it up, getting
started, and creating a sample application are presented in the following sections.

Using the Simulator System — Requirements for
Getting Started

The following are the requirements to be able to develop TI-83 Plus applications using
TI's simulator development system. The Zilog Developer Studio and TI-83 Plus
Simulator/Debugger installation and operations are covered in Chapter 4.

« IBM® PC compatible computer.
« Windows® 95 operating system
» The Zilog Developer Studio
e The TI Simulator/Debugger

With the above environment up and running, let us look at creating a sample application.

TI-83 Plus Developer Guide Initial Release October 29, 1999

122 Chapter 3: Application Development Process

Creating an Application for Debugging — One-Page
and Multi-Page Apps

In the section that discusses memory maps, you saw that there are up to ten 16K

Flash ROM pages available for storing applications. This storage area is also used for
archived calculator variables, so as the archive grows fewer pages are actually available
for apps. In theory it is possible to create an app that takes up all 10 pages and is 160K
in size. However, most apps will surely be smaller and this is desirable to conserve
memory and download time.

Apps are always allocated in whole pages. It is not possible for an app to share a page
with another app or archived variables. If an app only uses 40 bytes it is still allocated
the whole 16K Flash ROM page. And if an app requires 16K+1 bytes, it is allocated
exactly two 16K Flash ROM pages. For this reason we say that apps are a 1-Page App
or a Multi-Page App. Creating multi-page is a little more complicated than 1-page apps,
so we will begin with 1-page apps.

A Brief Overview of Certificates and Application
Signing

In normal calculator usage, an application is installed in a calculator by downloading it
from a PC or another calculator via the link cable. When the app is received it is
examined by the operating system loader for a valid Tl digital signature. All Flash apps
to be distributed must be digitally signed by TI before they will be accepted by the
operating system. Since all apps must be signed, an app build must go through TI
before it can be loaded in the normal way. Since signing is 1) an external process for
developers, 2) is limited, and 3) has turnaround time associated with it, a single
calculator debugging technique is available to facilitate code development. The
debugging technique that follows avoids having to sign each iterative build.

Creating Applications that Fit On One Page

Applications are written in Z80 Assembly language. While there are C to Z80 cross
compilers, Tl recommends the use of assembly language for efficiency and memory
space reasons. The format of the source code depends on the assembler/linker
package that you use. With the package Tl recommends (ZDS), App source code is
plain ASCII text. There is no special editor required. You can use any editor (such as
Notepad) that can save the file as plain ASCII. The required source code syntax also
varies by assembler. The examples and discussions provided by Tl conform to the
requirements of the Zilog Developer Studio (ZDS) assembler and linker.

ZDS uses a file naming convention of *.asm for all source files containing executable
statements and *.inc for all include files.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 123

The Hello Application

Tl has provided a sample application called Hello. The source for this application is in
the file hello.asm. Open this file in a text editor and look at it to get a general idea of the
main structural elements. The following sections address these elements.

Accessing System Resources

The program begins by including the T183plus.inc file. This file is provided by TI. This file
includes constant definitions, macros, and system routine entry point definition needed
to use system resources.

Application Headers

The most unique thing about the TI-83 Plus application source code is the long set of
data that begins the file. This data is known as the application header. The application
header contains information used by the calculator operating system when the user tries
to run the application. The operating system uses this information to determine the app
name and whether a user is permitted to use it. A valid header must be present as the
first data in the source file, prior to any executable statement, in order for the app to run

properly.

Header Creation

The header in the hello.asm file can be used for any single page application.

Calling System Routines

On the TI-83 Plus there are a number of built-in system routines available for an
application to use. These routines can not be called directly using the standard Z80 call
instruction. In order to call a system routine, you must use a statement of the form:

B_CALL routine

In this example, routine is the name of any system routine. B_CALL is a macro defined
in the system include file.

Accessing System Variables

Certain fixed locations in RAM are defined for system code usage. The contents of
these locations typically affect some standard system behavior. System routines
sometimes use the variables, so they are in effect parameters to the system calls. To
access one of these variables, you use its symbolic name (e.g., curRow). The variable
names are defined in the system include file, TI183plus.inc.

TI-83 Plus Developer Guide Initial Release October 29, 1999

124

Chapter 3: Application Development Process

Defining a String

Many system routines operate on null-terminated strings, which are a series of
characters followed by the byte 00h. The assembler supports null-terminated string
creation through use of the directive .asciz. This permits you to type the string in
readable text instead of defining each byte separately. Each character of the string is
translated to its ASCII code and stored at the current location and a null character is
then appended. In our example, we define a label that points to the first character of the
string so that we can point to the string in our system calls.

Erasing the Screen

To erase the screen, the example does the system call.
B_CALL CIrLCDFull ; Clear the screen

Printing Text to the Screen

To print text to the screen, the example uses the system call.
B_CALL PutS ; Print the hello string from RAM

This routine prints a null-terminated string in large text to the screen. It expects you to
have already set up the screen row and column where it should start printing the string.
The screen rows range from 0 (Top) to 7 (Bottom), and the columns range from O (Left)
to 15 (Right). You set these values in the system variable curRow and curCol prior to
the call. The PutS routine expects Z80 register HL to contain the address of the first
character of the string. It requires that this string be in RAM.

Copying the String

To copy a string from Flash ROM, where it is defined in your program, into RAM, where
the system routine PutS can use it, you can use the system routine StrCopy . This
routine expects the address of the source string to be in HL and the address of the first
RAM destination character to be in DE. It expects a null-terminated string. The example
copies the string Hello into the OP1 area in RAM (see next paragraph).

System RAM Registers

The calculator system code performs many operations on floating-point values. It uses a
floating-point format that requires up to 11 bytes in certain situations. Since floating-
point operations are so common, it defines six 11-byte areas that it uses frequently for
storing such numbers. It gives these RAM areas the name OP1, OP2, OP3, OP4, OP5,
and OP®6. In our example, the system routines StrCopy and PutS do not use or modify
these areas, so we use six of the eleven OP1 RAM bytes to temporarily store our string
in RAM. In this case, we are just using OP1, since changing those locations is harmless;
the fact that OP1 may be used at some later time to pass floating-point data does not
matter.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 125

Reading a Key Press

The system routine GetKey waits for a user to press a key on the calculator keypad.
The example (found in the hello.asm file) uses this fact to implement a pause so that
you can read the string it printed.

Exiting an Application

When an application is ready to quit and return control back to the calculator operating
system so that normal calculator features will again be available, it must perform the
following system call:

B_JUMP JForceCmdNoChar ; Exit the application

Creating a Multiple Page Application

The fundamental change in moving from a one-page application to a multi-page
application is the addition of the branch table. The branch table is used by system code
to perform the correct paging of physical Flash ROM pages into the logical address
space when a call or jump is made to a routine that exists on a page that is not currently
mapped.

Branch Table Entries

The branch table exists only on the first application page, immediately after the header.
It is a table of three-byte entries. Each entry is a pointer to a routine that is either called
or jumped to from a page of the application other than the page where it exists. A
routine that is called or jumped to only from locations on the same page does not need
an entry in the table. Each entry has the form:

DW Address
DB Relative App Page

The Address is the address of the routine on its page. To obtain the value, where the
routine is defined, make the label public. You will need to refer to your assembler for
instructions on how to make and reference a public routine.

The Relative Application Page is the page of the application where the routine resides.
In this case, page numbers are relative to the first application page: the first application
page is 0, the second is 1, and so on.

TI-83 Plus Developer Guide Initial Release October 29, 1999

126 Chapter 3: Application Development Process

Branch Table Placement

Application execution begins at the address immediately following the header. The
branch table is not part of the header, but must be placed immediately after the header.
To resolve this conflict, a jump instruction to the start of the application needs to be
placed between the end of the header and the start of the table.

Also, the first entry in the branch table must be located at an address which is a multiple
of three bytes from the beginning of the page. You may need to add padding bytes
before the branch table to ensure this.

Branch Table Equate File

Whenever a branch table exists, an include file must also be generated that contains
equates for the branch table entries. Each equate in the file is the name of the routine in
the branch table with an underscore character prefixed to it. The associated value is the
byte offset where the routine’s table entry begins.

For example, the routine showGoodByeP2 exists on the second application page but
must be called from the first application page, so it needs an entry in the branch table.
The branch table entry for this routine happened to be located at a position 41 times
three-bytes from the start of the first application page.

; Byte offset 41 * 3
DW showGoodByeP2 ; Address
DB 1 ; Second app page

So in the include file the following equate is created.
_showGoodByeP2 equ 41*3

This include file must be included in any source code that calls or jumps to a routine on
another page.

Making Off-Page Calls and Jumps

When code calls or jumps to a routine on an application page different from the point of
the call, this is known as an off-page call or jump. The B_CALL and B_JUMP macros
must be used when making off-page calls and jumps. For example, when the routine
showHelloP2, which is on the second page, is called from the first page, the call must be
made as follow:

B_CALL showHelloP2

A call of the form
CALL showHelloP2

will not work at all.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 127

When an on-page call, a call to a routine that exists on the same application page as the
point of the call, is made, the normal call opcode should be used. B_CALL and B_JUMP
should not be used in this case.

CREATING A ZILOG DEVELOPER STUDIO PROJECT

Let us go through the use of the Zilog Developer Studio software to build the Hello
application presented earlier in this chapter.

Creating the Project

Copy the files from <install directory\Demo to C:\mydemo directory
Start Zilog Developer Studio

Select File, and then New Project

A w N PF

In the New Project dialog box, set the following fields to the specified values:
Selection by = Family
Master = 2180
Project Target = 280180
Project Name = C:\mydemo\mydemo.zws

In the Initializations dialog box, set the following fields to the specified values:
Program Counter = 0
Stack Pointer =0

Adding Files to the Project

1. Select Project, then Add to project, and then Files...

2. Inthe Insert files into project dialog box double click on hello.asm.

Project Settings

1. Select Project, then Settings, and then Linker.
2. Inthe Linker Options dialog box select the Ranges tab.
3. Click on the New... button.

TI-83 Plus Developer Guide Initial Release October 29, 1999

128 Chapter 3: Application Development Process

4. In the New Section Range dialog box set the following fields to the specified values:
Bounds = Length
Radix = Hexadecimal
Section Name = .text
Start Address = 4000
Length = 4000
5. Click OK then click Apply then click OK.

Building the Application

1. Select Build, and then Rebuild All.
2. The following text should appear in the output window:
Building...
hello.asm
hello.o — 0 error(s), 0 warning(s)
Linking...

mydemo.ld — 0 error(s), 0 warning(s)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 129

Loading the Application into the Simulator

Start the TI Flash Debugger.

Select File, and then New.

Select Debug, and then Go. The TI-83 Plus calculator will be displayed.
Click on the key of the calculator.

Texas Instruments TI-83 !EI

A w DD PR

&9 Texas INSTRUMENTS TI-B3 Plus

EEE 1nance...
: CEL-CER

TI-83 Plus Developer Guide Initial Release October 29, 1999

130 Chapter 3: Application Development Process

Next:

Click the button on the calculator.

On the Debugger menu select Debug, and then Stop.

Select Load, and then Application.

In the Load Application dialog box, double click on the file C:\\mydemo\mydemo.hex.
Select Debug, and then Go.

Click on the key on the calculator. Application three will be titled Hello .

o g A~ w N

=

Next:

1. Click the 3 key on the calculator to run the Hello application. Hello will appear on the
screen.

2. Click on any key of the calculator to quit the Hello application.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process

131

Debugging the Application

In the following steps we will demonstrate some of the debug capabilities. We will set a
breakpoint at the start of our application and after the Hello string is copied to RAM. We
will then modify the RAM copy of the string to HOWDY .

1. Select Debug, and then Stop.

2. Select View, and then Memory Map.

This view shows us that the Hello application is on page 0x14 of Flash.

3. Select Debug, and then Breakpoints.

4. Update the Edit Breakpoints dialog box so that it looks like the following:

& Memory Map M=
0FFFF FPage App Mame
Page 0200 - Rk %15 CHL/CER,
CL000 014 Hell
113 <Mones:
Page 0x071 - Rak 012 <Mone:
02000 0:11 <Maoner
110 <Mones:
0x0F <Moner
G400 Fage 0x06 - FLASH 0<0E <Manes
=00 <Monesr
0x0C <Maonex
Page 0=00 - FLASH
Q0000
EditBreakpoints |
= FLASH FPage [Hex) Address [Hex)
" RAM f14 4080
— Breakpointz

F 014z Q030

Eemmve |

0k |

Note: If we look at the hello.Ist file we will see that StartApp : is located 0x80 bytes from the start of
the page (at x4080).

TI-83 Plus Developer Guide

Initial Release October 29, 1999

132

Chapter 3: Application Development Process

Next:

1. Click OK to exit the Edit Breakpoints dialog.

2. Select Debug, and then Go.
3. Click on the key of the calculator. Note that the Status of the Debugger is

Running.

4. Click on the 3 key of the calculator. The status of the Debugger will change to Halted

when the breakpoint is reached.

#= Tl FLASH Debugger - TI83Plus
File Debug Yiew Window Load Help

D| =@ b= | a1 2]

407F
S 4080
4083
4084
4087
4089
408C
408F
4032
4095
4098
409E
409E
4043
4044
4045
4046

Now:

nn
EFi045
AF
324C84
3E03
324B84
2143410
117884
EFE344
217884
EF0A45
EF7249

chs0002740 B_JUMP JForceCmdHoChar

43
45
4c
4cC

& Disassembly

HOF

B CATL ClrLCDFull
HOR A

L' (curCol). &
LD A.0003

L' (curFow). &
LD HL.SHello
I DE.OQFP1

B CALL StrCopy
II» HL.OP1

B CALL Puts
B_CALL GetEewy

I» C.B
LD
1D
LD

v i
= m e

&9 Texas INsTRUMENTS TI-83 Plus

EEE 1NEnceE...
- CEL~CER

:H=11a

mooe| oEL)
ALOCK Lk LEST
| xren | STAT

TERT A AWGIE 8 DRAW C O

warh ! [(AePS) emam) vams| ciees]
!

Mapx D gt T opat 7 oTANY O T LR

X sM | cos | i o~ 1

[EL

Right Click on address line 4098 to bring up the breakpoints pop-up menu.

Select Set Breakpoint.

Select Debug, and then Go. The calculator display will be cleared and the
disassembly view will be updated to indicate that it is stopped at address 4098.

4. Select View, and then RAM to bring up the RAM view. In the Start Logical Address

field enter OP1.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 3: Application Development Process 133

#= Tl FLASH Debugger - TI83Plus =1 E3
File Debug View Window Load Help

D[] ©f=1]a] 2]

§ o BRI
407F 00 HOF Start Logical Address: oP1
4083 AF I0OR A gooog4s80 20 00 00 00 48 65 6C BC
1084 324C84 LD f{curCol).A (00008488 6F 20 20 20 00 00 16 0O
4087 3EQ3 1D A.0003 ngooos490 00 00 OO0 OO 00 00 oo oo
4089 37434 ID {ocurRow). A gooog49a 00 14 48 65 BC BC BF 20
’ gooog4a0 20 20 00 00 OO 81 10 OO0
408C 214340 LD HL.SHelle joppoe4a® 00 00 00 OO0 00 00 OO0 0O
408F 117884 LD DE.QP1 gooog4bno 00 00 00 00 00O OO OO 0O
4092 EFE244 E_CALL StrCopy (000084bE 00 00 00 00 00 00 00 48
4095 217804 10 HL 0Pl gooog4cn 65 6C 6C BF 20 20 20 00

0ooog4c2 00 00 00 00 OO0 OO0 00 oo

S7 4098 EFDA4S B_CALL PutS 000084d0 00 00 00 BS 3D B7 90 Bd
409E EF7249 E_CALL GetKey |000084d2 FC 3E 00 00 00 C5 &F 00
409E CDS0002740 B _JUMP JForceCnd|000084=0 00 00 00 F9 FC 00 00 00
1043 48 ID C.B 000084=8 00 00 00 00 00 00 00 00

oooog4f0 00 00 00 00 OO 00 00 oo

4044 45 b B.L 0000B4f2 00 OO0 OO0 00 00 OO0 OO0 00
4045 4AC LD C.H 00008500 00 OO0 00 00 00 00 00 00
4046 4AC ID C.H 0O0DOES02 20 20 20 20 20 20 20 20 -
TAR S - =
Ready | Status : Halted | [v
Finally:

1. Change byte 8479 from 45 E to 4F O, 8480 from 4C L to 57 W, 8481 from 4C L to
44 D and 8482 from4F Oto 59 Y.

Select Debug, and then Go. The calculator will display HOWDY.
Click any key on the calculator to quit the application.
Select Debug, and then Stop.

o ~ w N

Select Debug, and then Breakpoints to bring up the Edit Breakpoints dialog box.
Disable the breakpoints by clicking on each of the check boxes in the breakpoint list.

o

Select Debug, and then Go.
Click the key on the calculator.

Click the 3 key on the calculator. The Hello application will run and display Hello
again.

©

Click any key on the calculator to quit the application.

TI-83 Plus Developer Guide Initial Release October 29, 1999

134 Chapter 3: Application Development Process

Now we will modify Flash to change the original Hello string so that the change will
persist between each execution of the application.

10. Select Debug, and then Stop.
11. Select View, and then Flash.

12. In the Start Physical Address field enter 500A3. If we look at the hello.Ist file, we will
see that the Hello string begins at offset 0 x A3. Since the application is on page
0x14 we get 0x14 * 0x4000 + O0xA3 = 0x500A3.

13. Change the byte at address 0x500A3 to 0 x 53, 0x500A4 to 0x54, 0x500A5 to 0x41,
0x500A6 to 0x52 and Ox500A7 to 0x53.

14. Select Debug, and then Go.
15. Click the key on the calculator.
16. Click the 3 key on the calculator.

17. The calculator will display STARS (as in the Dallas Stars, the 1999 Stanley Cup
Champions) each time the application runs.

18. Select File, and then Close to close the debug session. A dialog box will appear
asking if you want to save changes.

19. Click the Yes button.

20. The Save As dialog box will appear. Save debug session to
C:\Mydemo\mydemo.83d.

21. Select File, and then Exit to exit the Debugger.

Preparing an Application for Site Testing

As mentioned in the section introducing certificates, applications must be digitally signed
by Tl and a user calculator must have a license before the application will run on that
calculator. The debugging technique used with the simulator circumvents this restriction,
but it only works on the simulator, not a real calculator.

Once an application has become well developed, some developers may need to perform
testing at their development site beyond one person using an emulator. Typically, the
development team may own 3 to 20 TI-83 Plus calculators on which they wish to test
the app. To support this need, Tl may issue certificates for the group of testing
calculators and set the developer up so that they can sign the app instead of TI. In this
situation, the app will only run on the selected calculator group.

To sign an app, the developer needs four things.

1. Another set of files provided in a TI Zip file.
2. A Developer ID.

3. A set of digital keys to use in signing.

4

Unit certificates for each calculator to be used in testing.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 3: Application Development Process 135

The developer will need to provide Tl with the ID of each calculator to be used. This
information is viewable on the calculator by selecting [2ND][Mem][1:About]. Each ID will
have the form ID:00000-00000-0000.

On receiving this list, Tl will assign the developer a Developer ID, generate a set of
digital keys, and create unit certificates for the calculators. The keys are contained in
one file: xxxx.key. The xxxx in the filename will be the developers Developer ID (a hex
number). Each unit certificate file will be named U12345.cer, where the 12345
corresponds to the middle 5 digits of the calculator ID for which it is intended. Typically
all of this information can be e-mailed to the developer.

The TI Zip file should be unzipped to the developer directory where the other files
reside. The key and certificates should also be placed in the developer directory.

The unit certificates should be loaded to each calculator using the PC utility flashd.exe
provided in the Tl Zip file. This process requires a GRAPH LINK cable.

In the applications header, the App ID needs to be changed to the Developers ID given
by TI. For example, the App ID used in demo application would be changed from 0104
to xxxx — where xxxx is the Developer ID. The developer should then rebuild the
application.

Signing the Application

To sign the app, use the following command: appsign xxxx.key demo.hex.

The standard file naming convention for downloadable TI-83 Plus applications is *.app.
We rename the final result to match this convention. The app should now download to
and run on the test calculators.

Downloading the App

You can use either the flashd.exe program provided by Tl or the TI-83 Plus GRAPH
LINK program to download the app to the calculators.

Preparing for Public Release

When applications are ready to be distributed, they must go through a signing process
at Texas Instruments. The current steps and requirements will be available on the Tl
Web site at www.ti.com/calc.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Development Tools

DEVELOPMENT ARCHITECTURE

The TI development architecture is based on the Tl simulator/debugger using the Zilog
Developer Studio software. In the following sections, we will address the Tl
simulator/debugger and the related tools used to develop applications for the TI-83 Plus
calculator.

Z80 DEVELOPMENT SYSTEM

Zilog Developer Studio is a programming suite made by Zilog to compile assembly code
for its microprocessors, including the Z80 used in many Texas Instruments graphing
calculators. ZDS may have several advantages in that it is graphical, has a built-in
editor, and most importantly, it is free. You may wish to consult Zilog's web site at
http://www.zilog.com for more information. This documentation is currently written for
version 2.12 of ZDS.

INSTALLATION

ZDS is easily obtained for free from Zilog’'s web site. A link to download the current
version is present on their software downloads page at
http://www.zilog.com/support/sd.html and is approximately 6.9 MB in size. Download the
installer (currently named zds212.exe) and run it. Follow the instructions to install the
ZDS suite. This will install the software on your computer and place a link to it in your
Start menu. Now lets look at the simulator/debugger.

TI SOFTWARE SIMULATOR AND DEBUGGER

Introduction

The TI-83 Plus simulator provides the capability to simulate the TI-83 Plus calculator to
allow debugging of applications. The following is a detailed description of the various
menu options, screens, and operations.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools 137

Installation

To install the Tl Flash Debugger, run the installation file that has been furnished with the
SDK package.

Getting Started

Invoke the flashsim.exe file. The simulator/debugger application presents the following
screen.

#= Tl FLASH Debugger M= E3

File “iew Help

O | |] 1] | 2 |

eady tatus:Halke
Read |S Halted | | L

This window is the home screen for the application. Various other windows with selected

views are presented which are explained below. The menu selections available from the
home screen include:

Eile
New Ctrl + N
Open Ctrl+ O
Open Selection Dialog box
Recent File (grayed out)
Exit

TI-83 Plus Developer Guide Initial Release October 29, 1999

138 Chapter 4: Development Tools

View
Tool Bar (selected)
Status Bar (selected)
Help
About Tl Flash Debugger

The tool bar icons, which are defined by hovering the cursor over the applicable icon,
has selections for New (File), Open (File), Save (File), the debugger controls — Go,
Stop, and Step (grayed out), — and ? (About).

The status bar at the bottom of the window indicates the status of the debugger and
simulator. The left side of the status bar indicates the status of the debugger

(i.e., Ready). The first box on the right side of the status bar indicates the status of the
simulator. In this case, the status of the simulator is halted.

The simulator/debugger uses two files:
<xyz>.83d which contains debug information (breakpoints).
<xyz>.clc which contains the calculator memory contents, where <xyz> is the file name.

The next step is either to create a new debug file or open an existing one. For example
purposes, we will create a new debug file. Upon selecting File/New, the following CPU
view is presented with additional selections on the menu bar and tool bar as noted
below.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools

139

#= Tl FLASH Debugger - TI83Plus
File Debug “iew Window Load Help

ISi[=] E3

D|=(3| b= 2]

&= CPU

[+ 10000
SF (0000
FC 0000

[T Add/Sub [Cary

% A Iﬁlﬁ = Stack,

s e [
D oo oo E
H oo Joo o
[T Sign I Zero [HalFCarmy [Farity/Cwverflow

TStates: ID

Feset Z80 registers and gatearray's output ports

| I Interrupts

Ready |Status : Halted [| A
File
New Ctrl + N
Open Ctrl+ O
Open Selection Dialog Box
Close
Save Ctrl+S
Save As...
Save As Selection Dialog Box
Recent File (grayed out)
Exit
Debug
Go F5 Starts the debugger
Stop (grayed out) Stops the debugger
Step F10 Allows single instruction stepping
Step Over F11 Steps over CALL and B_CALL instructions.

Breakpoints...

Edit Breakpoints Dialog Box

TI-83 Plus Developer Guide

Initial Release October 29, 1999

140

Chapter 4: Development Tools

View

Trace Option...

Trace Option Dialog Box

CPU

Disassembly

FElash

RAM

Memory Map
Calculator

Trace Log

Toolbar (selected)
Status bar (selected)

Window

Load

Help

Cascade
Tile
1CPU

Application...

Load Application (Hex) File Dialog Box
Base Code...

Load Base Code (Hex) File Dialog Box
RAM File...

Load RAM File Dialog Box
Options...

Loading Option Dialog Box

About Tl Flash Debugger

First, we will look at the Edit Breakpoint and Trace Options dialog boxes.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Chapter 4: Development Tools 141

Breakpoints

Setting breakpoints is available via the manual setup dialog box from the
(Debug/Breakpoint drop down menu). To remove breakpoints, select the breakpoint and
press the Remove button.

E dit Breakpoints |
" FLASH Page [Hex) Addresz [Hex)
" RAM |15 {4080
— Breakpointz

F:0=1 5 Dwd 080

ok

Trace Options

This dialog box presents options to be considered in performing a trace such as page,
and address ranges.

Trace Options i

I- Addrezs Range [Hex]

Start |EIH¢1IZIEIEI
End IEI:-:?fff

Let us now look at the CPU View first, then we will present each of other views with
details of each.

TI-83 Plus Developer Guide Initial Release October 29, 1999

142 Chapter 4: Development Tools

CPU View Window

% CPU _ O] %]

¢ IW = A IF IF = Stack

e Joooo m ¢ glo o g
spfooon E oo [g
pcfooon L Hfoo foo b

M Sign [Zero [T HalfCary [T Parity/Owverflow

M AddiSub ™ Carny TStates: ID

Reset 2580 registers and gatearray's output ports

T O @ *
=) =
=
=

| [Interrupts

The CPU View displays several items of processor information.

IX index register

Y index register

SP stack pointer

PC program counter
AF accumulator/Flag register
BC register

DE register

HL register

A'F alternative register
B'C alternative register
D'E’ alternative register
HL alternative register
Sign Sign — flags

Zero Zero — flags

Parity/Overflow Parity/Overflow flag

Half Carry Half Carry
Carry Carry
Add/Sub Flag set if a subtraction operation occurred, otherwise is reset for

any other operation.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools

143

Tstate

Time State — counts the number of time periods.

Reset Z80 registers and gate array output ports.

Stack

Interrupts

List the values currently pushed onto the stack.

Indicates if interrupts are enabled.

Disassembly View Window

Contains the address, byte code, and instructions of the disassembled code.
Breakpoints can be set and cleared from this screen by use of the right mouse click.
This window is automatically invoked when the Debugger STOP key is pressed.

407F 00 HOFP ...I
W 4080 EF4045 B CALL ClrLCDFull

4083 AF HEOR A

4084 324C34 LD (curCol). A

4087 3E03 LDy A, 0003 J

4089 324B34 LD (curkFow). A

408c 214340 II' HL.SHello

408F 1173834 Iy DE.OFP1

4092 EFE344 B _CALL StrCopwy

4095 217884 Iy HL.OFP1

4098 EF0A45 B _CALL PutS

4098 EF7249 B CALL GetKew

409E CD50002740 BE_JUMP JForceCmdHoChar

40A3 48 I C.B

40A4 45 I E.L

40A5 AC I C.H

40Ae AC I C.H

a40A7 AF ID C.A

40A8 00 HOFP ;I

TI-83 Plus Developer Guide

Initial Release October 29, 1999

144 Chapter 4: Development Tools

Flash View Window

Displays the entire contents of Flash memory. This is the Edit/View screen. The Start
Physical Address edit box is used to view addresses by entering the desired address
and hitting enter.

Start Physical Address: |

goooooono 3E 1F D3 06 ©3 95 01 FF C3 04 10 FD CE 07 46 ﬂ
gogoooorF C9 C3 C3 13 FD CE 02 66 C9 C3 BF 20 FD CBE 03
goooooliE Ce C9 C3 De 10 3A 53 96 BY C9 C3 10 28 97 32
gooooozp 53 96 C9 C3 AV 0A VE 23 66 6F C9 18 2F DB 04
gooooozc CB ST CZ 02 01 CB 6% C2 F1 00 1F 38 54 1F 38
goooood4e 5C 18 27 FF FF C3 80 28 C3 4E 09 S5A AR FF C3
gpooooosA 28 25 C3 4E 25 FF FF FF 23 0OF 31 2E 31 30 00
ooooooe% 08 D9 18 CDFS 3E 08 D3 03 F1 D3 03 3E OB FD
goooooys CB 16 46 28 02 C6 04 D3 03 08 D9 FB ED 4D FD
goooooeg? CB 03 4E 20 0OE FD CE 17 CE FD CB 03 4E 20 04
gogooo9e FD CEB 13 Fe C3 1B 00 CD 19 07 FD CE 16 3E 3E
0Ooooo0AS 0A 18 C5 FD CE 18 %96 FD CB 16 46 28 0B FD CB
goooooe4 OF 7E C4 CC 3F FD CE OF FE FD CB 12 46 C4 84 ;l

RAM View Window

Displays the entire contents of RAM. This is the Edit/View screen. The Start Physical
Address edit box is used to view addresses by entering the desired address and hitting
enter.

£ Ram M=l E3
Start Physical Address: I

gooosooo 0o 00 00 00 00 0O o0 00 o0 ao 00 ao0 00 o0 0o oo il
gooosolo 0o o0 00 00 00 0O o0 00 00 0o OO0 Qo0 00 oo 0o oo
gooosgozo 00 00 00 OO0 OO0 0O o0 00 o0 0o OO0 OO0 0o oo 0o oo
goooso3o 00 o0 00 00 00 0O o0 00 o0 ao OO0 a0 00 o0 0o aa
goooso40 00 00 OO0 OO OO 0O o0 00 o0 OO OO0 Qo0 00 oo 0o oo
gooosgoso 00 o0 00 00 00 0O o0 00 00 0o OO0 Qo0 0o oo 0o oo
gooosos0 00 00 00 OO0 OO0 0O o0 00 o0 o 00 oo 0o oo 0o aa
goooso?0 00 00 00 00 00 0O o0 00 o0 OO OO0 Qo0 00 oo 0o oo
gooososo0 00 00 00 OO0 OO0 0O o0 00 00 OO OO0 Qo0 00 oo 0o oo
goooso%o0 00 00 00 00 00 0O o0 00 o0 ao 00 oo 0o oo 0o aa
gooosoio 00 00 OO0 OO OO 0O o0 00 o0 0o OO0 Qo0 00 oo 0o oo
gooogoBo 00 00 00 OO OO 0O o0 00 00 0o OO0 Qo0 0o oo 0o oo
gooosoco 0o o0 0o 00 00 00 o0 00 o0 ao 00 Qo 0o a0 0o oo ;I

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools 145

Memory Map Window

Shows which pages of Flash and RAM are currently mapped in the Z80 address space.

0+FFFF Page App Mame
Page 000 - Rk Ow18 COL/CER, .
0xL000 014 Hello
113 <Mones
Page 0x01 - Bak 012 <Maone:
Ox8000 111 <Mones:

110 <Mones

0=0F <Mones:
04000 Page 0=06 - FLASH OME. <Mors
000 <Maones
0x0C <Mone:

Page 0=00 - FLASH

0=0000

Calculator Simulator Window

The following screen shot contains an active simulated TI-83 Plus calculator. An
application has been started by selecting the Debug pull down menu and the Go choice.
The simulated calculator is then turned on by clicking the ON button which will display
the screen shown below.

TI-83 Plus [X]

&9 Texas INSTRUMENTS T1-83 Plus

TI-83 Plus Developer Guide Initial Release October 29, 1999

146 Chapter 4: Development Tools

The input to the TI-83 Plus calculator screen can be done in two ways:

» Pressing the simulated keys with the mouse cursor and seeing the results on the
screen.

» Using the computer keyboard keys and seeing the results on the screen. This
method is provided via three configuration files that are included in the SDK —
83pkeymap.cfg, 83pkeys.cfg, and pckeys.cfg.

The 83pkeymap.cfq file contains the mappings from the PC keys to the TI-83 Plus
keys.

The 83pkeys.cfg file. contains the TI-83 Plus keyboard keys with their values.
The pckeys.cfg file contains the PC keyboard keys with their hex values.

While all three files are viewable and editable in various editors including Notepad,
the only file that should be edited by the developer is the 83pkeymap.cfg file.

Note: Shift key mapping is not supported.

Let us now look at other available views.

Trace Log Window

Displays the output of a trace — the execution of instructions within a developer
definable address space.

Trace Log
4050 EF4045 E_CALL CiLCDFul

4083 AF WOR &

024 374084 LD jcuiColl4

#057 3E03 LD 40003

089 324E04 LD [cuRow]A 4|56”Eﬁ3"'
s0C 214340 LD HL.5Helo

J0F 117804 LD DEQPI Clear |
4092 EFE344 E_CALL StCopy

4095 217884 LD HLOP]

4098 EF0A45 E_CALL PutS

s0% EF7243 E_CALL Getkey

409 CODSE0002740 B_JUMP JForceCmdMoChar

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools 147

The Trace Options dialog box is used to define this address space as indicated earlier:

Enable Tracing If checked, tracing is enabled.
Page The page of Flash or RAM that should be traced
Address Range Start The start of the address space to trace.
End The end of the address space to trace.
Trace Options]|

Page [Hex] ililﬂ 5 Cancel I

I- Addrezz Range [Hex]

Start Inxemnn
End ilila-:?fff

Here is how it works:

If tracing is enabled, the value of the PC is between the Start and End address and the
current page equals the Page specified, the current instruction is added to the trace log
buffer.

The developer can view the contents of the trace buffer by bringing up the Trace Log
dialog box. The trace log buffer is a circular buffer and can hold up to 4K of instructions.
From the Trace Log dialog box, the developer can save [Save As..] the contents of the
trace buffer. Using the [Clear] button, the contents of the buffer is cleared

TI-83 Plus Developer Guide Initial Release October 29, 1999

148 Chapter 4: Development Tools

With the trace option settings of:

Page = 0x15
Start = 0x4080
End = OX7FFF

the following output is produced:

4080 EF4045 B_CALL CIrLCDFull
4083 AF XOR A

4084 324C84 LD (curCol),A
4087 3E03 LD A,0003
4089 324B84 LD (curRow),A
408C 21A340 LD HL,SHello
408F 117884 LD DE,OP1
4092 EFE344 B_CALL StrCopy
4095 217884 LD HL,OP1
4098 EFO0A45 B_CALL PutS

409B EF7249 B_CALL GetKey
409E CD50002740 B_JUMP JForceCmdNoChar

Loading Applications, Operating System, and RAM
Files

Selecting the Load/Application... menu item allows you to load an Application.

Load Application

Lookin: |3 Beta Test 1.1

&t110.hex

File name: I Open I
Files of type: IInteIHe:-: [* hex) j Cancel |

TI-83 Plus Developer Guide Initial Release October 29, 1999

Chapter 4: Development Tools 149

Selecting the Load/Operating System menu item allows you to load a new version of
Operating System.

Load operating system code

Loak in: I 5 exe
et110Lhex

File name: I Open |
Files af type: IInteIHe:-: [*.hex] j Cancel |

The latest operating system is included during the installation of the simulator. Selecting
Go from the Debug menu activates the calculator simulator with the operating system
operational. When a new release of the operating system is produced, it will be available
from the TI web site for download and installation. By invoking the Load menu and then
selecting the Operating System item, the developer will be able to load the new version
of the operating system.

Selecting the Load/RAM File... menu item allows you to load a RAM file.

Load File
Lockin: |23 Tidph13

File name: I Open

Filez af type: ITI-BS Fluz File [*.857*.837] j Cancel |

TI-83 Plus Developer Guide Initial Release October 29, 1999

150

Chapter 4: Development Tools

Terminating a Session

Selecting Close from the File menu allows you to save the current debugging session.

|Note: The default extension is .83d. This action also saves the <xyz>.clc file.

Save As

Sawve in; Ia Beta Test 1.1
TI83Flus. 83d

File name:

;.10 Save I
Save as ype: ITI-B3 Fluz Debugager File [*.83d) j Cancel |

Support in Writing Applications

There are various sources for help in writing TI-83 Plus applications. A few of these
resources include:

TI-83 Plus Developer’s Guide (this book).
TI-83 Plus Graphing Calculator Guidebook

TI1-83 Plus Tutorials @ http://www.ti.com/calc

TI-83 Plus Developer Guide Initial Release October 29, 1999

GLOSSARY

ACC
Address

APD™
API

Applet
Archive
memory

ASAP
ASCII

Assembler

Assembly
language

Binary

ACC stands for accumulator.

A number given to a location in memory. You can access the location by
using that number, like accessing a variable by using its name.

Automatic Power Down™.

Application Programmer’s Interfacel] the set of software services available
to an application and the interface for using them.

A stand-alone application, usually in Flash ROM, with the associated
security mechanisms in place. See ASAP.

Part of Flash ROM. You can store data, programs, or other variables to the
user data archive, which cannot be edited or deleted inadvertently.

Assembly Application Program a RAM-resident application.

American Standard Code for Information Interchange a convention for
encoding characters, numerals in a seven or eight-bit binary number. ASCII
stands for.

A program that converts source code into machine language that the
processor can understand, similar to compilers used with high-level
languages.

A low-level language used to program microprocessors directly. Z80
assembly language can be used on the TI-83 Plus to write programs that
execute faster than programs written in TI-BASIC. See Chapter 3 for
advantages and disadvantages.

A system of counting using O’'s and 1's. The first seven digits and the
decimal equivalents are:
0
1
10
11
100
101
110
111 7

See also Hexadecimal.

D O WDN P

TI-83 Plus Developer Guide

Initial Release October 29, 1999

152

Glossary

Bit

Boot (code)

Byte

Calculator

serial number

Character
Compiled
language
Compiler
D-Bus

Decimal

E-Bus
Entry points

Execute
Flash-D

Freeware

Short for binary digit — either 1 or 0. In computer processing and storage, a
bit is the smallest unit of information handled by a computer and is
represented physically by an element such as a single pulse sent through a
circuit or a small spot on a magnetic disk capable of storing either a 1 or a O.
Considered singly, bits convey little information a human would consider
meaningful. In groups of eight, however, bits become the familiar bytes used
to represent all types of information, including the letters of the alphabet and
the digits 0 through 9. (Microsoft Encarta ‘97)

A small amount of software that resides in ROM; therefore, it cannot be
overwritten or erased. Boot code is required for the calculator to manage the
installation of new base code.

A unit of information consisting of 8 bits, the equivalent of a single character,
such as a letter. 8 bits equal {0-255} and there are 256 letters in the
extended ASCII character set. Standard ASCII uses a 7-bit value (0-127),
thus there are 128 characters.

An electronic serial number that resides in a calculator’'s Flash memory. It is
used to uniquely identify that calculator.

A single letter, digit, or symbol. Q is a character. 4 is a character. % is a
character. 123 and yo are not characters.

A language that must be compiled before you can run the program.
Examples include C/C++ and Pascal.

A compiler translates high-level language source code into machine code.

A proprietary communication bus used between calculators, the
Calculator-Based Laboratory™ (CBL™) System, the Calculator-Based
Ranger™ (CBR™) and personal computers.

The standard (base 10) system of counting, as opposed to binary (base 2)
or hexadecimal (base 16).

Enhanced D-Bus.

Callable locations in the base code corresponding to pieces of code that
exhibit some coherent functionality.

To run a program or carry out a command.

A PC program that is the integration of a PC downloader application with a
calculator application. When the Flash-D program is executed on the PC,
the calculator application is transferred to the calculator via a

TI-GRAPH LINK™ cable.

Programs or databases that an individual may use without payment of
money to the author. Commonly, the author will copyright the work as a way
of legally insisting that no one change it prior to getting approval. Commonly,
the author will issue a license defining the terms under which the
copyrighted program may be used. With freeware, there is no charge for the
license.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Glossary

153

Garbage
collection

TI-GRAPH

LINK™

Group
certificate

Hexadecimal

High-level
language

IDE

Immediate

Interpreted
language

Instruction

I/O port

LCD port

Low-level
language

Machine
language

Mac Link

A procedure that automatically determines what memory a program is no
longer using and recycles it for other use. This is also known as automatic
storage (or memory) reclamation

An optional accessory that links a calculator to a personal computer to
enable communication.

Used to identify several calculators as a single unit. This allows the group of
calculators, or unit, to be assigned a new program license using only one
certificate (instead of requiring a new unique unit certificate for each
calculator in the group). The group certificate must be used in conjunction
with the unit certificate.

Base 16 system, which is often used in computing. Counting is as follows:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}.

Any programming language that resembles English. This makes it easier for
humans to understand. Unfortunately, a computer cannot understand it
unless it is compiled into machine language. See also low-level language.
Examples of high-level languages are C/C++, Pascal, FORTRAN, COBOL,
Ada, etc.

Integrated Development Environment.

An addressing mode where the data value is contained within the instruction
instead of being loaded from somewhere else. For example, in LD A, 17, 17
is an immediate value. In LD A, B, the value in B is not immediate, because
it is not written into the code.

A language that is changed from source code to machine language in real-
time. Examples are BASIC (for the PC and the TI version, TI-BASIC) and
JavaScript. Interpreted languages are often much simpler, which helps
beginners get started and allows experienced programmers to write code
quickly. Interpreted languages, however, are restricted in their capability,
and they run slower.

A command that tells the processor to do something, for example, add two
numbers or get some data from the memory

An input/output interface from the calculator to the external world. It allows
communication with other units, CBL™ and CBR™, and personal computers.

An output port that drives LCD display device for use on overhead
projectors. Available on the teacher’s ViewScreen™ calculator only.

Any programming language that does not look like English but is still to be
understandable by people. It uses words like add to replace machine
language instructions like 110100. See also high-level language.

Any programming language that consists of 1's and 0’s (called binary),
which represents instructions. A typical machine instruction could be
110100, which means add two numbers together

Maclntosh resident link software that can communicate with the calculator.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

154

Glossary

Marked Dirty

Memory

Microprocessor

Operating
System (OS)

Processor

Program

Program ID
number

Program
license

Register

Register pair

Run (Busy)
Indicator

SDK

Shareware

The graph is marked as needing to be updated. The next system routine
that will affect the graph contents will cause the system to regraph all of the
equations selected thereby making the graph clean.

Memory is where data is stored. On the TI-83 Plus, the main memory is the
built-in 32K of RAM. This memory is composed of one-byte sections, each
with a unique address.

See processor.

The software included with every new calculator. OS contains the features
that are of interest to customers, as well as behind-the-scenes functionality
that allows the calculator to operate and communicate. In our newer
calculators, the OS is in Flash ROM, so the user can electronically upgrade
it with OS.

A large computer chip that does most of the work in a computer or
calculator. The processor in the TI-83 Plus is the Zilog Z80 chip.

A program is a list of instructions written in sequential order for the
processor to execute.

An ID number assigned to a particular software program. It is used during
the program authentication process to match the program licenses in a
unit/group certificate to the program being downloaded into the calculator.

A digital license purchased by a customer allowing the customer to authorize
the download/execution of a particular software program to a specific
calculator. The program licenses are assigned to and listed in the calculator
unit/group certificates.

A register is high-speed memory typically located directly on the processor.
It is used to store data while the processor manipulates it. On the TI-83 Plus
there are 14 registers.

Two registers being used as if they were one, creating a 16-bit register.
Larger numbers can be used in registered pairs than in single registers. The
register pairs are AF, BC, DE, and HL. Register pairs are often used to hold
addresses.

When the TI-83 Plus is calculating or graphing, a vertical moving line is
displayed as a busy indicator in the top-right corner of the screen. When you
pause a graph or a program, the busy indicator becomes a vertical moving
dotted line.

Software Development Kit[J a set of tools that allow developers to write
software for specific platforms.

Sometimes called User Supported or Try Before You Buy software.
Shareware is not a particular kind of software, it is a way of marketing
software. Users are permitted to try the software on their own computer
systems (generally for a limited period of time) without any cost of obligation.
Payment is required if the user has found the software to be useful or if the
user wishes to continue using the software beyond the evaluation (trial)
period.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Glossary

155

Signed
application

Silent link

Software
owner’'s
account

Source code

TASM

TI-BASIC

Tl signature
User Data
Archive
Unique

owner ID

Unit
certificate

Z80

ZDS

Payment of the registration fee to the author will bring the user a license to
continue using the software. Most authors will include other materials in
return for the registration feelJ like printed manuals, technical support,
bonus or additional software, or upgrades.

Shareware is commercial software, fully protected by copyright laws. Like
other business owners, shareware authors expect to earn money from
making their software available. In addition, by paying, the user may then be
entitled to additional functions, removal of time limiting or limits on use,
removal of so-called nag screens, and other things as defined in the
documentation provided by the program'’s author.

An application that has been digitally signed by TI.

Computer-initiated requestl] protocol version of communications between
the computer and the calculator.

An account set-up in the Tl database listing all of the program licenses
owned by a particular customer or group. The account also allows the
software owner to assign a particular program to a specific calculator.

A text file containing the code, usually in a high-level or low-level
programming language.

Table Assembler—a PC program that assembles source code for the Z80
and other processors. This has been one of the more popular tools for
developing calculator ASM programs.

The programming language commonly used on the TI-83 Plus. It is the
language that is used for PROGRAM variables. Its main drawback is that
these programs run slower, since it is an interpreted language, rather than a
compiled language.

A digital signature placed on secured documents/files such as unit and
group certificates, as well as software program images.

Storage for user data in the Flash ROM. In some cases, the user can
choose between the amount of Flash for applets versus user data.

An alphanumeric ID assigned to the owner of a software owner’s account as
a way of authorizing access to this account. Examples of the ID are mother’s
maiden name, social security number, birth date, etc.

A digital certificate signed by TI that lists all of the program and group
licenses issued to a specific calculator. The unit certificate also includes
owner ID information and the calculator serial number.

This processor is used in the TI-83 Plus. Z80 assembler is the language
used to program the Z80 chip.

Zilog Development Studiol] a tool used by developers to write software for
Zilog products. This tool can be used to develop TI-83 Plus calculator
applications and ASM programs.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix

A

System
Routines

Entry point
name:

Category:
Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

The following is the format in which each of the entry points will appear. The

entry points are listed alphabetically by category.
Name used to identify the routine.

Each entry point is identified by function into a category.

Brief description of usage/purpose. How the routine works and additional
information about the input.

Setup values in processor registers.
Setup values in processor flags (F register).
OPX, stack or RAM locations initial conditions affecting results.

Return information in processor registers.
Return information in process flags.
Return information in OPX, stack, or RAM.

Processor registers whose initial values may be modified, so caller is
responsible for preserving.

RAM space needed, where applicable.

Description of appropriate usage context, limitations, and any other useful
information, side effects, assumptions, etc.

An example of how to set up initial conditions and use the routine.

NOTE () indicate indirection

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
Display

2 T Y= 65T o1 P 159
L0 aT=Tod 145y o] 111 F= 1o [PPSR 160
1011 T= 15 = {0 1 PSPPSR 161
L4 | 1 I PP 162
L0 [I I 1 | PSPPI 163
CIrO P S .ttt ettt et e e e 164
(04125 To1 1 o 1SR 165
(O 12 Tor 1 | || OSSP 166
L0 1 14 15 2 o PSPPI 167
DISPDIONE. ... e 168
D 1] o] o 1 169
DISPIAYIMAGE ...t 170
DISPOP LA ...ttt e e e ————————— 172
ErAQSEEOL ... oo 173
FOIMBASE ...t e 174
010 01 0L o] b P 176
FOIMEREALo e e e s 178
FOIMREAL.... ..o e e e e e s 179
0T To L= 1 (=T o (P 180
0T Vo IS o] o) S 181
(O U140 101 = o PPN 182
PULC s 183
U 111 = o 184
PUIPS o 185
PULS e 187
U 10] 1] (1 T P 189
TSy (o] (= I o U 190
RUNINAICOTT ... e e e e e e eeaaanaas 191
1] 1o Lo @ o PP 192
Y= 1Y LCT I o IS 193
SEINOIMM VIS ... e 194
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

158 Appendix A: System Routines — Display

Contents (continued)

] o] | = PPN 195
SSINGLENGLN ... e 196
RV U 11 = o TSP 197
VPULS L. 198
VPUESN. ..o 200

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display 159

Bit_VertSplit

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display
Tests if the TI-83 Plus is set to G-T (graph-table) display mode.

None
None
None

None
Z =1 if G-T mode is set
None
None

Applications may want to reset the 83+ to full screen mode if graphing
functionality is used. In G-T mode the screen is split vertically with 1/2 being
the graph screen and the other the table display.

B_CALL Bit_VertSplit ; test for G-T mode
JR NZ,Screen_is_Split ; jump if G-T mode

TI-83 Plus Developer Guide Initial Release October 29, 1999

160

Appendix A: System Routines — Display

CheckSplitFlag

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Display

Checks if either horizontal or G-T split screen modes are active.

None

grfSplitOverride, (IY + sGrFlags) = 1 to ignore split mode settings
This flag is set to make system routines draw to the full screen even when in a
split screen mode.

None

None

Z =1 if no split screen mode is active
= 0 if a split screen mode is active

None
None

B_CALL

CheckSplitFlag

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

161

ClearRow

Category: Display

Description: Clears eight consecutive LCD display drive rows.

Inputs:

Registers: A = LCD display driver row coordinate (0x80 — OxBF)
Flags: None

Others: None

Outputs:

Registers: None

Flags: None

Others: Eight pixel rows cleared

Driver left in X increment mode

Registers A, B, DE

destroyed:

Remarks: This routine requires A to be in LCD display driver row (X) coordinates, which
have a valid range between 0x80 — OxBF, with the top pixel row equal to 0x80
and the bottom pixel row equal to OxBF. Passing in a value for A outside this
range will cause unpredictable results and probably a lockup. This routine
erases eight consecutive rows, so if you pass in A = 0x88, the 9th — 16th pixel
rows from the top of the display are erased. If you pass in a value between
0xB9 — OxBF, the erased rows wrap back to the top of the display. In normal
usage, if you are erasing a line of large text, the A value should be a multiple
of Ox08.

Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

162

Appendix A: System Routines — Display

CIrLCD

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display
Clears the display.

None

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set

vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (IY + sGrFlags) = 1 to ignore split modes

None

None
None
None
All

This routine only acts on the display, not the textShadow .
Clear the display using the current split settings:
B_CALL CIrLCD

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display 163

ClIrLCDFull

Category: Display
Description: Clears the display ignoring any split screen settings.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Entire display is cleared.
Registers All
destroyed:
Remarks:
Example: B_CALL CIrLCDFull

TI-83 Plus Developer Guide Initial Release October 29, 1999

164

Appendix A: System Routines — Display

CIrOP2S

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Sets the floating-point number in OP2 to be positive.

None
None
None

None

None
None

B_CALL

CIrOP2S

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display 165

ClIrScrn

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display
Clears the display. If textShadow is in use clears it also.

None
appTextSave,(IY + appFlags) = 1 if the textShadow is to be cleared also

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set
vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (IY + sGrFlags) = 1 to ignore split modes
None

None

None

Display and possibly textShadow cleared.
All

B_CALL CirScrn

TI-83 Plus Developer Guide Initial Release October 29, 1999

166

Appendix A: System Routines — Display

ClrScrnFull

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Clears the display entirely ignoring split screen settings. If textShadow is in
use clears it also.

None

appTextSave, (IY + appFlags) = 1 if the textShadow is to be cleared also

None

None
None

Display and possibly textShadow cleared.

All

B_CALL

ClIrScrnFull

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

167

ClrTxtShd

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Clears the textShadow buffer.

None
None
None

textShadow set to spaces.
None

None

BC, DE, HL

ClrScrn falls into this routine which zeros out 128 bytes starting at textShadow
(one byte for each 5 * 7 screen position (8 rows * 16 columns)).

TI-83 Plus Developer Guide

Initial Release October 29, 1999

168

Appendix A: System Routines — Display

DispDone

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Displays Done on text screen.

None
None
None

None
None
None
HL

B_CALL

DispDone

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

169

DispHL

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Converts the contents of HL to a decimal and writes it to the screen at current
cursor position. The string displayed is always 5 characters and right justified.
The large 5x7 font is used.

HL = two-byte value to convert
None
None

None
None

String displayed. (OP1) = start of five character decimal number string, right
justified.

AF, DE, HL

If the string does not fit on the current display row then it is truncated at the
screen’s edge.

Set HL = 357 and display it starting in row 0 column O.

LD HL,0

LD (curRow),HL ; set cursor position
LD HL,357

B_CALL DispHL

RET

what will be displayed is " 357", which has two leading spaces.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

170

Appendix A: System Routines — Display

Displaylmage

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Display
Displays a bitmap image stored in RAM.

HL = pointer to image structure
Height of image in pixels — one-byte
Width of image in pixels — one-byte
Image data by rows

The first byte contains the data for the first eight-pixels of the first row. Bit 7 is
the left-most pixel of the first row.
Each new row starts on a byte boundary.

There may be unused bits in the last byte of each row if the image is not a
multiple of eight in width.

DE = location on screen to place the upper left corner of the image.
(row, column)

(0,0) = upper left corner of the screen.

The image can be oriented off of the screen: ffh = -1. The only restriction is
that the image cannot be entirely off screen.

1 if image drawn to display only.
0 if image drawn to display and graph buffer.

plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlags) 1 if image drawn to graph buffer only.

This flag overrides the plotLoc flag.
None

None
None

Screen, graph buffer
RAM locations @ ioPrompt - ioPrompt + 7

All

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display 171

Displaylmage (continued)

Example: Display an image three-pixels high by 17 pixels wide at position (0,0) to the
display only.
ImageData:
DB 3,17 ; height, width
DB 80h,3eh,10h ; row 1, only bit 7
; of the last byte
;is used
DB 11h,35h,0h T row 2
DB 0ffh,01h,10h s row 3
LD HL,ImageData ; pointer to bitmap
LD DE,OP1
LD BC,11
LDIR ; copy image data to
: RAM
LD HL,OP1 ; pointer to image
LD DE,0 ; position of upper
; left corner
SET plotLoc,(lY+plotFlags)
B_CALL Displaylmage

TI-83 Plus Developer Guide Initial Release October 29, 1999

172

Appendix A: System Routines — Display

DispOP1A

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Display

Displays a floating-point number using either small variable width or large 5x7
font. The value is rounded to the current “fix” setting (on the mode screen)
before it is displayed.

ACC = maximum number of digits to format for displaying

textinverse, (IY + textFlags) = 1 for reverse video

textEraseBelow, (IY + textFlags) = 1 to erase line below character
textWrite, (IY + sGrFlags) = 1 to write to graph buffer not display
fracDrawLFont, (IY + fontFlags) = 1 to use large font, not small font

(penCol) = pen column to display at
(penRow) = pen row to display at

None
None
None
All

OP1, OP2, OP3, OP4
Displaying stops if the right edge of the screen is reached.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display 173

EraseEOL

Category: Display
Description: Erases screen to end of line.
Inputs:

Registers: None

Flags: None

Others: curRow, curCol point to screen position.
Outputs:

Registers: None

Flags: None

Others: None
Registers None, saves registers beforehand.
destroyed:
Remarks: curRow, curCol are also saved and restored.

If the sEditRunning, (IY + apiFlg3) flag is set (sfont running).

Example: LD HL,0801h ; curRow =1, curCol = 8
LD (curRow),HL
LD A'H'
B_CALL PutC
LD Al
B_CALL PutC
B_CALL EraseEOL ; clear to end of line

TI-83 Plus Developer Guide Initial Release October 29, 1999

174

Appendix A: System Routines — Display

FormBase
Category: Display
Description: Converts a RealObj (single floating-point number) in OP1 into a displayable

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Ram Used:

Remarks:

string.

Use the current mode settings SCI, ENG, NORMAL and FIX setting to format
the string.

The output can also be formatted as a fraction or a Degrees, Minutes,
Seconds (DMS) number.

None

To use the current format settings:
(Flags + fmtFlags) copies to (Flags + fmtOverride)
To override the current settings, modify the following flags:

Resetting the next two flags sets NORMAL display mode.
fmtExponent, (fmtOverride) = 1 for scientific display mode
fmtEng, (fmtOverride) = 1 for engineering display mode

Setting the next three flags will signify DMS formatting.
fmtBin, (fmtOverride)
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Setting the next two flags will signify Fraction formatting.
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 - 9 if fix setting is specified
OP1 = value to format.

BC = length of string

None

String returned in RAM starting in OP3, and is 0 terminated
All

OP1 - OP6

If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width entered
and the current fix setting.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

175

FormBase (continued)

Example:

Generate a random number and display it at the current cursor position. Use

all the current format settings except force SCI formatting.

B_CALL
LD

RES
SET

LD
B_CALL

LD
B_CALL

Random ; OP1 = random number

A, (flags+fmtFlags) ; get current format

; settings
fmtEng,A
fmtexponential ; override current and

; set SCI formatting
(flags+fmtOverride),A ; set override flags
FormBase ; generate the string
HL,OP3 ; start of string
PutS ; display string

TI-83 Plus Developer Guide

Initial Release October 29, 1999

176 Appendix A: System Routines — Display

FormDCplx

Category: Display

Description: Converts a CplxObj (pair of floating-point numbers) in OP1/OP2 into a
displayable string.

Use the current mode settings SCI, ENG, NORMAL, FIX setting, and complex
number display format to format the string.

The output can also be formatted as a fraction or a Degrees, Minutes,
Seconds (DMS) number.

Inputs:
Registers: None

Flags: To use the current format settings:
(Flags + fmtFlags) copies to (Flags + fmtOverride)

To override the current settings, modify the following flags:

Resetting the next two flags sets the NORMAL display mode.
fmtExponent, (fmtOverride) = 1 for scientific display mode
fmtEng, (fmtOverride) = 1 for engineering display mode

These flags control the formatting of complex numbers.
rectMode, (fmtOverride) = 1 for rectangular complex display
fmtEng, (fmtOverride) = 1 for polar complex display

Setting the next three flags will signify DMS formatting.
fmtBin, (fmtOverride)
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Setting the next two flags will signify Fraction formatting.
fmtHex, (fmtOverride)
fmtOct, (fmtOverride)

Others: (fmtDigits) OFFh for FLOAT, no fix setting
0 — 9 if fix setting is specified

OP1 = value to format
Outputs:
Registers: BC = length of string
Flags: None

Others: String returned in RAM starting in OP3, and is 0 terminated.

Registers All
destroyed:
RAM used: OP1 - OP6

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display 177

Form DCp'X (continued)

Remarks: If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width entered
and the current fix setting.

Example: Generate a random complex number and display it at the current cursor
position. Use all the current format settings except force SCI formatting.
B_CALL Random : OP1 = random number
RST rPushRealO1 ; save
B_CALL Random : OP1 = random number
B_CALL PopRealO2 ; OP2 = 2nd part of
; floating-point number
LD A, (flags+fmtFlags) ; get current format
; settings
RES fmtEng,A
SET fmtexponential : override current and
; set SCI formatting
LD (flags+fmtOverride),A ; set override flags
B_CALL FormDCplx ; generate the string
LD HL,OP3 ; start of string
B_CALL PutS ; display string

TI-83 Plus Developer Guide Initial Release October 29, 1999

178

Appendix A: System Routines — Display

FormEReal
Category: Display
Description: Converts a RealObj (single floating-point number) in OP1 into a displayable

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

string.
This routine will ignore all format settings.
Specify the maximum width allowed for the string generated.

ACC = maximum width of output, minimum of six
None
OP1 = value to format

BC = length of string

None

String returned in RAM starting in OP3, and is O terminated.
All

OP1 - OP6

If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width entered
and the current fix setting.

Generate a random number and display it with a maximum of six characters at
the current cursor position. Ignore all format settings when generating the
string to display.

B_CALL Random ; OP1 = random number

LD A6 ; max width to format value with
B_CALL FormEReal ; generate the string

LD HL,OP3 ; start of string

B_CALL PutS ; display string

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

179

FormReal
Category: Display
Description: Converts a RealObj (single floating-point number) in OP1 into a displayable

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

string.
Specify the maximum width allowed for the string generated.

ACC = maximum width of output, minimum of six

fmtExponent, (fmtFlags) = 1 for scientific display mode
fmtEng, (fmtFlags) = 1 for engineering display mode

If both of the above flags are reset, then NORMAL display mode.

(fmtDigits) = OFFh for FLOAT, no fix setting
=0 - 9 if fix setting is specified

OP1 = value to format

BC = length of string

None

String returned in RAM starting in OP3, and is 0 terminated.
All

OP1 - OP6

If the current display mode settings are SCI or ENG, the output string will
reflect the setting. The value is rounded based on the maximum width entered
and the current fix setting.

Generate a random number and display it with a maximum of six characters at
the current cursor position.

B_CALL Random : OP1 = random number

LD A,6 ; max width to format value with
B_CALL FormReal ; generate the string

LD HL,OP3 ; start of string

B_CALL PutS ; display string

TI-83 Plus Developer Guide

Initial Release October 29, 1999

180

Appendix A: System Routines — Display

LoadPattern
Category: Display
Description: Loads the font pattern for a character to RAM. Also includes the characters
width in pixels. This will work for both variable width and 5x7 fonts.
Inputs:
Registers: ACC = character equate
Flags: fracDrawLFont, (IY + fontFlags) = 1 to use Large 5x7 font
= 0 to use variable width font
Others: None
Outputs:
Registers: None
Flags: None
Others: For large 5x7 font: RAM @ IFont_record = width of character, seven-byte font
For variable width font: RAM @ sFont_record = width of character, seven-byte
font
The first byte of the font is the pixel mapping for the top row and each
subsequent byte is the next row.
The LSB of each byte represents the right most pixel of a row.
Registers All
destroyed:
RAM used:
Remarks: If fracDrawLFont is set, it must be reset.
Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

181

Load SFont

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Copies small font attributes to RAM for a particular display character.

HL = offset into small font table
None
None

HL = pointer to sFont_record RAM
None

sFont_record...sFont_record + 7 = font
DE, HL

This might be useful, if you wish to write your own LoadPattern or VPutMap
routine for displaying small display characters. The system character fonts
(large and small) use eight-bytes per character.

To convert a character number to a table offset, multiply the number by eight.
Find the width of the small display character f:

LD A'F
LD LA
LD H,0
ADD HL,HL ; * 2 turn character into an
; offset.
ADD HL,HL x4
ADD HL,HL ; * 8 multiply by 8 to get
; table offset.
B_CALL Load_SFont ; sFont_record =
; 03,00,02,04,06,04,04,00
LD A,(HL) ; 1st byte is width

TI-83 Plus Developer Guide

Initial Release October 29, 1999

182

Appendix A: System Routines — Display

OutputExpr

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Converts a numeric value, string or equation, into a string and displays it using
the large 5x7 font. This routine should be used with the split screen setting to
set to FullScreen.

H = column number to display at: e.g., 0...15
L = row number to display at: e.g., 0...7

textinverse, (IY + textFlags) = 1 to display in reverse video
appTextSave, (IY + appFlags) = 1 to write character to textShadow also

OP1/0OP2 = what to display:
Floating-point number in OP1
Complex number in OP1/OP2
A variable name in OP1 of type: complex, list (real/complex), matrix,
string, equation.

None

None

System errors can be generated, See the Error Handlers section in Chapter 2.
String output to display.

All

Previous cursor setting is restored to curRow and curCol. Output will wrap to
next line if complete string does not fit on a single line. Output will stop at
bottom of screen.

Output the contents of matrix variable [A] at cursor location row 2, column 3.

LD HL,matAname
RST rMov9ToOP1 ; OP1 = matrix [A] name
AppOnErr Catch_Error ; install error handler
LD HL,3*256+2 ; row 2 column 3
B_CALL OutputExpr
AppOffErr
Catch_Error:
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display 183

PutC

Category: Display
Description: Displays a character and advance cursor.
Inputs:

Registers: A = character to display

Flags: textinverse: = 0, normal character 1, invert character
Others: curRow, curCol = display row and column values
Outputs:

Registers: None
Flags: None
Others: curRow, curCol Updated

Registers None
destroyed:
Remarks: This routine calls PutMap to do the character display.

This may cause a screen scroll if on the bottom line.

Example: LD HL,0801h ; curRow =1, curCol = 8
LD (curRow),HL
LD A"H"
B_CALL PutC
LD ANl
B_CALL PutC

;(PutS might be more useful for multiple characters)

TI-83 Plus Developer Guide Initial Release October 29, 1999

184

Appendix A: System Routines — Display

PutMap

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Display
Displays a character in the large font without affecting cursor position.

ACC = character to display, see TI83plus.inc

textinverse, (IY + textFlags) = 1 to display in reverse video

appTextSave, (IY + appFlags) = 1 to write char to textShadow also

preClrForMode, (IY + newDispF) = 1 to preclear the character space before
writing

This is done when toggling between inverted and uninverted.

(curRow) = home screen row to display in, 0-7
(curCol) = home screen column to display in, 0-15

None
None
None
None

See: PutC.
Display char C in row 3 column 4:

LD HL,4*256+3

LD (curRow),HL ; set curRow & curCol
LD A'C

B_CALL PutMap

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display

PutPS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:
Registers

destroyed:

Remarks:

Display

Displays a string with a leading length byte residing in RAM, at the current
cursor position, and stops at the bottom of the display. This routine uses the
large 5x7 font.

HL = pointer to length byte of string followed by the string

textinverse, (1Y + textFlags) = 1 to display in reverse video

appAutoScroll, (IY + appFlags) = 1 to scroll if need to display past the bottom
of the display.

appTextSave, (IY + appFlags) = 1 to write character to textShadow also.

preClrForMode, (IY + newDispF) = 1 to preclear the character space before
writing. This is done when toggling
between inverted and noninverted.

(curRow) = cursor row position, (0 —7)
(curCol) = cursor column position, (0 — 15)

None

Carry = 1 if entire string was displayed
Carry = 0 if string did not fit in the display

curRow and curCol are updated to the position after the last character
displayed.

All but DE

It is recommended that this routine be placed in-line so that strings can be
displayed from an application without copying them to RAM first. See the
Display Routines section in Chapter 2 for further information.

(continued)

TI-83 Plus Developer Guide

185

Initial Release October 29, 1999

186

Appendix A: System Routines — Display

PUtPS (continued)

Example: PutPs:

PutPS10:

PutPS20:

PutPS30:

LD
INC
LD
OR
RET

LD
INC

B_CALL

LD
LD
LD
CP
RET

DJINZ
RET

B,(HL) ; B = length of string

HL

AB

A

VA ; IFLENGTH IS O RET

A,(HL) ; get a character of string name
HL

PutC ; display one character of string
A,(curRow)

C,A

A,(winBtm)

C ; IS CURSOR OFF SCREEN ?
VA ; RET IF YES

PutPS10 ; display rest of string

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

187

PutS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:
Registers

destroyed:

Remarks:

Display

Displays a zero (0) terminated string residing in RAM at the current cursor
position. This routine uses the large 5x7 font.

HL = pointer to start of string

textinverse, (1Y + textFlags) = 1 to display in reverse video

appAutoScroll, (IY + appFlags) = 1 to scroll if need to display past the bottom
of the display.

appTextSave, (IY + appFlags) = 1 to write character to textShadow also.

preClrForMode, (IY + newDispF) = 1 to preclear the character space before
writing. This is done when toggling
between inverted and noninverted.

(curRow) = cursor row position, (0 —7)
(curCol) = cursor column position, (0 — 15)

None

Carry = 1 if entire string was displayed
Carry = 0 if string did not fit in the display

curRow and curCol are updated to the position after the last character
displayed.

HL

To avoid having to copy strings from an application to RAM before using this
routine, it is much more efficient to place this routine inside of the application.
By doing so, the application can display strings without first having to copy to
RAM.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

188

Appendix A: System Routines — Display

PUtS (continued)

Example: Puts:

..10:

..20:

PUSH
PUSH
LD
LD

LD
INC
OR
SCF

JR
B_CALL

LD
CP
JR

POP
LD

POP
RET

BC

AF
A,(winBtm)
B,A

HL
A

Z,..20
PutC

A,(curRow)
B
C,..10

BC
AB
BC

; B = bottom line of window
; get a character of string name

; end of string?
; indicate entire string was
; displayed
;yes --->
; display one character of string

; check cursor position
; off end of window?
; no, display rest of string

; restore A (but not F)

; restore BC

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display 189

PutTokString

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display
Displays the string for a token at the current cursor location.

DE = token value. If a one-byte token then D = 0, E = token.
None

(curRow) = home screen row to display in, 0-7
(curCol) = home screen column to display in, 0-15

None

None

String displayed with wrapping.
All

Display the string for the Sin(token at the current cursor location:

LD D,0
LD E,tSin ; DE = token
B_CALL PutTokString ; get its string and display

it

TI-83 Plus Developer Guide Initial Release October 29, 1999

190

Appendix A: System Routines — Display

RestoreDisp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Display
Displays one to 64 rows of the display starting with the top row.

HL = pointer to ROM/RAM of the data for the first row to display, from left to
right. This is followed by the remaining row’s data. Each row is stored in
12-bytes, the first column is bit seven of the first byte for each row.

B = number of rows to be displayed
None
None

None

None

Data written to the display.

Interrupts are disabled, turn them back on if needed.
All

curXRow — 1 byte

Copy the first 10 lines of the graph buffer to the display.

LD HL,plotSScreen ; start of buffer

LD B,10 ; 10 rows to display
B_CALL RestoreDisp

El ; re-enable interrupts

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display

191

RunindicOff

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Turns off run indicator.

None
None
None

None

None
None

B_CALL

RunIndicOff

TI-83 Plus Developer Guide

Initial Release October 29, 1999

192

Appendix A: System Routines — Display

RunindicOn

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Turns on run indicator.

None
None
None

None

None
None

B_CALL

RunindicOn

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

193

SaveDisp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Display
Copies a bit image of the current display to RAM.

HL = pointer to RAM location to save the image — the bit image of the display
is 768 bytes in size.

None
None

None

None

Contents of display written to RAM. Interrupts are disabled.
All

curXRow
Split screen modes are ignored, the entire display is copied.
Copy the current display to the graph backup buffer, plotSScreen .

LD HL,plotSScreen
B_CALL SaveDisp
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

194

Appendix A: System Routines — Display

SetNorm_Vals

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

Display
Sets display attributes to full screen mode.

None
None
None

None
None

Display attributes set to full screen. Allows for full screen drawing and text
displaying.

All

This routine should only be used in combination with the setting of appropriate
system flags that control the screen split settings. See the Display and Split
Screen Modes sections in Chapter 2 for further information.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

195

SFont_Len

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Returns the width, in pixels, a character would use if displayed using the small
variable width font.

HL = offset into the font look-up table. This is generated by multiplying the
character equate of a character by eight.

None
None

ACC = number of pixels needed to display the character using the small font.
None
None
All B

Return the width in pixels of the small font character:

LD HL,Scolon*8
B_CALL SFont_Len

; compute offset

TI-83 Plus Developer Guide

Initial Release October 29, 1999

196

Appendix A: System Routines — Display

SStringLength

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Returns the width in pixels a string would use if displayed using the small
variable width font.

HL = pointer to the string, with the first byte being the number of characters in
the string. The string must reside in RAM.

None
None

ACC and B = number of pixels needed to display the string using the small
font.

None
None
All but HL

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display

197

VPutMap

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Display

Displays a character at the current pen location. Uses either the variable width
font or the large 5x7 font.

The advantage to displaying the large font with this routine instead of the PutC
routine is the character can be placed at any location on the screen. With
PutC routine, the characters can only be displayed in the 8 row by 16 column
grid specified by (curRow) and (curCol).

ACC = character to display

textinverse, (IY + textFlags) = 1 for reverse video

textEraseBelow, (IY + textFlags) = 1 to erase line below character applies to
variable width font only

textWrite, (IY + sGrFlags) = 1 to write to graph buffer instead of the display

fracDrawLFont, (IY + fontFlags) = 1 to use large font, not small font

(penCol) = pen column to display at
(penRow) = pen row to display at

None

None

CA (carry) = 1 if could not fit in screen
All but BC

Pen location (0,0) is the upper left corner of the display.

The formatting flags are normally reset. An application should make sure that
these flags are managed properly during execution and reset before returning
to normal system operation.

Draw the character C at pen location (0,0):

LD HL,0

LD (penCol),HL ; set penRow and penCol
LD A'C

B_CALL VPutMap

TI-83 Plus Developer Guide

Initial Release October 29, 1999

198

Appendix A: System Routines — Display

VPutS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Display

Displays a zero (0) terminated string at the current pen location. Uses either
the variable width font or the large 5x7 font.

The advantage to displaying the large font with this routine instead of the PutS
routine is the string can be placed at any location on the screen. With the PutS
routine, the string can only be displayed in the 8 row by 16 column grid
specified by (curRow) and (curCol).

HL = pointer to O terminated string in RAM.

1 for reverse video

1 to erase line below character

1 to write to graph buffer not display
1 use 5x7 font

0 use variable width font (default)

textinverse, (Y + textFlags)
textEraseBelow, (Y + textFlags)
textWrite, (IY + sGrFlags)
fracDrawLFont, (1Y + fontFlags)

(penCol) = pen column to display at
(penRow) = pen row to display at

None

None

CA = 1if could not fit on the row of the screen entirely
HL

Pen location (0,0) is the upper left corner of the display. If fracDrawLFont is
set, it must be reset. It is recommended that the following routine be placed
in-line so that strings can be displayed from an application without copying
them to RAM first. See the Display Routines section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display 199

VPUtS (continued)

VPutS:
PUSH AF
PUSH DE
PUSH IX
..10:
LD A,(HL) ; get a character of string name
INC HL
OR A ; end of string?
JR Z,.20 ;yes --->
B_CALL VPutMap ; display one character of string
JR NC,..10 ; display rest of string IF FITS
..20:
POP IX
POP DE
POP AF
RET
Example: Display Hello world in variable width font at the current pen location.
LD HL,Hellostr
LD DE,OP1
LD BC,14
LDIR ; copy string to RAM
LD HL,OP1
B_CALL VPUtS
RET
Hellostr:
DB "Hello World",0

TI-83 Plus Developer Guide Initial Release October 29, 1999

200

Appendix A: System Routines — Display

VPutSN

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Display

Displays a string of known length at the current pen location. Uses either the
variable width font or the large 5x7 font.

The advantage to displaying the large font with this routine instead of the PutS
routine, is the string can be placed at any location on the screen. With the
PutS routine, the string can only be displayed in the 8 row by 16 column grid
specified by (curRow) and (curCol).

HL = pointer to first character of string in RAM
B = number of characters to display

1 for reverse video

1 to erase line below character

1 to write to graph buffer not display
1 use 5x7 font

0 use variable width font (default)

textinverse, (Y + textFlags)
textEraseBelow, (Y + textFlags)
textWrite, (IY + sGrFlags)
fracDrawLFont, (1Y + fontFlags)

(penCol) = pen column to display at
(penRow) = pen row to display at

None

None

CA = 1if could not fit on the row of the screen entirely
HL

Pen location (0,0) is the upper left corner of the display. If fracDrawLFont is
set, it must be reset. It is recommended that the following routine be placed
in-line so that strings can be displayed from an application without copying
them to RAM first. See the Display Routines section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Display

201

VPUtSN (continued)

VPutSN:

..10:

PP11:

Example:

Hellostr:

PUSH
PUSH
PUSH

LD
INC
B_CALL
JR
DJNZ

POP
POP
POP
RET

LD
LD
LD
LDIR

LD
LD
B_CALL

RET

DB

AF
DE
IX

A,(HL) ; get a character of string name
HL

VPutMap ; display one character of string
C,PP11 ; JUMP IF NO ROOM ON LINE
.10 ; display rest of string

IX
DE
AF

Display Hello world in variable width font at the current pen location.

HL,Hellostr
DE,OP1
BC,14
; copy string to RAM

HL,OP1

B,11 ; length of string
VPuUtSN

"Hello World"

TI-83 Plus Developer Guide

Initial Release October 29, 1999

A System Routines —
Edit

CIOSEEAIBUTNOR......cuiiiii i e 203
(LU T =10 £ @] | PP 204
{11] £ (@ o 1SRN 205
DISPE L ittt a e e ——— 206
(=Y 0151 T TP 207

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Edit

203

CloseEditBufNoR

Adjusts free RAM pointers

RAM is actually used.

Closes edit buffer, but does not delete it.

editOpen, (IY + editFlags) set if open

This routine is used to free up any extra RAM after an edit is finished and
before the parser is invoked to evaluate the input.

Category: Edit
Description:
Inputs:
Registers: None
Flags:
Others: None
Outputs:
Registers: None
Flags: None
Others:
Registers All
destroyed:
Remarks:
Same as:
Example:
08:

B_CALL
B_CALL

RET

B_CALL
JR
B_CALL

RET
B_CALL
CALL

B_CALL

B_CALL
RET

CanAlphins

CloseEditEqu

isEditEmpty
NZ,..08
CloseEditBuf

CloseEditBufNoR
AtName
Parselnp

ReleaseBuffer

; cancel alpha and insert
; mode

; return edit buffer to

; user memory

; is edit buffer empty?

, ho

; close & delete buffer

; without parsing

; close but do not delete

; Name of edit buffer
; parse. result -> OP1
; store result

; throw away edit buffer.

An edit session allocates all available RAM, but generally only a portion of that

TI-83 Plus Developer Guide

Initial Release October 29, 1999

204

Appendix A: System Routines — Edit

CursorOff

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Edit

Turns off the cursor if it is turned on and disable blinking.

None
curOn, (1Y + curFlags) = 1 if cursor is currently on.

appCurGraphic, (IY + appFlags) = 1 if the graphic cursor

This mode should not be set by an application.

appCurWord, (1Y + appFlags) = 1 if a full word cursor
This mode should not be set by an application.

If a normal edit cursor:
(curRow), (curCol) = cursor location
(curUnder) = character the cursor is covering

If a graphic cursor:
(curGX), (curGY) = center pixel location of cursor
(curGStyle) = which graph cursor is active

If a full word cursor:

These are specific to the current context and entries are made in-line in the

cursor blink routine.

None
curOn, (IY + curFlags) = is reset

curAble, (IY + curFlags) = is reset to disable future blinking

None
All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Edit

205

CursorOn
Category: Edit
Description: Enables cursor blinking and show the cursor.
Inputs:
Registers: None
Flags: curLock, (IY + curFlags) = 1 if cursor is locked disabled, the cursor
cannot be turned on to blink.
appCurGraphic, (IY + appFlags) = 1 if the graphic cursor
This mode should not be set by an application.
appCurWord, (1Y + appFlags) = 1 if a full word cursor
This mode should not be set by an application.
Others: If a normal edit cursor:
(curRow), (curCol) = cursor location
If a graphic cursor:
(curGX), (curGY) = center pixel location of cursor
(curGStyle) = which graph cursor is active
If a full word cursor:
These are specific to the current context and entries are made in-line in the
cursor blink routine.
Outputs:
Registers: None
Flags: curOn, (IY + curFlags) = is set
curAble, (IY + curFlags) = is set to enable future blinking
Others: (curUnder) = character the cursor is covering
Registers All
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

206

Appendix A: System Routines — Edit

DispEOL

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Edit
Displays edit buffer to End of Line.

None
None
editBuffer pointers

Display modified
None
None
AF, BC, DE, HL

Displays buffer from editTail to editBtm or until the end of the line is reached. If
the buffer is finished before reaching the end of line, then EraseEOL is called
to erase to the end of the line. Current curCol value is saved and restored by
this routine; it is not modified. Since this routine only displays to the end of the

current line, curRow is not modified.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Edit

207

KeyToString

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Edit

Converts key to a string value.

DE = key

D = 0 if a one-byte key

None
None

HL = keyToStrRam (keyForStr + 1)

None

keyForStr initialized to string

AF, BC, DE, HL

Keys are converted to tokens (if possible) and the token string copied to the
keyForStr RAM area (18 bytes).

HL points to the length byte of the string (in keyToStrRam).

See TI83plus.inc for key and token values.

To display the string for the Continue key:

LD

LD
B_CALL

B_CALL

B_CALL

keyToStrRam would appear as follows:

D,0

E,kCont

KeyToString

PutPSB

EraseEOL

; "Continue" is a one byte key,
; SO set to 0.
; "Continue"

; convert to string: HL points
; to keyToStrRam.
; display string preceded by a
; length byte...
; erase the rest of the line if
; need be.

08h, 43h, 6Fh, 6Eh, 74h, 69h, 6Eh, 75h, 65h
(Length of string is eight bytes, followed by the ASCII characters Continue.)

See TI83plus.inc or Appendix B for the TI-83 Plus character set values.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
Error

N 08T 1= o | S 209
o STz To [U= P 210
ST (=T SRR 211
0 T © i O 212
0] A I TP 213
g O] N[P 214
ErrD_OPLNOTPOS ...ttt e e e e e e e eaa e 215
ErrD_OPLINOPOSINT ...cccvtiiieiiiii et e e e e e ear e aaees 216
D= L= 1Y o1 S 217
T 41T 01 [0 o U 218
011V 1] g = (] P 219
EFTDIVBYO ...t e e e e e e e e e e e a e ————— 220
o T = 11 o USSR PPR 221
YT aTe =T 01T o 222
1Y 11T 223
(=T = 11T 1 S 224
I 0150 1 0 P 225
1YL= 0 0T Y2 226
o] T == 227
ETNONREAL ... e 228
ErrNOtENOUGNIMEMo 229
ErTOVEITIOW ... e e 230
ErrSIgNCRANGE ...evee e —————— 231
YT T [V F= T 1Y = SRR 232
5 - PSSP 233
ENTStatPIOL. ... e 234
537/] = PSSP 235
o] I 0 T0 15 1 = | PP 236
ErrUNAEfiNEdcoeeiii e —————— 237
08 1L o PP 238
08 1L (o] 1 o TP 239

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Error 209

ErrArgument

Category: Error

Description: Jumps to system error handler routine with the message ERR: ARGUMENT.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrArgument

TI-83 Plus Developer Guide Initial Release October 29, 1999

210

Appendix A: System Routines — Error

ErrBadGuess

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: BAD GUESS.

None
None
None

None

None
None

B_JUMP

ErrBadGuess

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 211

ErrBreak

Category: Error
Description: Jumps to system error handler routine with the message ERR: BREAK.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrBreak

TI-83 Plus Developer Guide Initial Release October 29, 1999

212

Appendix A: System Routines — Error

ErrD_OP1 0O

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 = 0.0, domain error system will take over with message ERR: DOMAIN.

None
None
None

None
None
None
A

B_CALL

ErrD_OP1 0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 213

ErrfD_OP1 LE 0

Category: Error

Description: If OP1 < 0 (not positive), domain error system will take over with message
ERR: DOMAIN.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers A
destroyed:
Remarks:
Example: B_CALL ErD_OP1_LE O

TI-83 Plus Developer Guide Initial Release October 29, 1999

214

Appendix A: System Routines — Error

ErrD_OP1Not R

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 is not real, domain error system will take over with message

ERR: DOMAIN.

None
None
None

None
None
None
A

B_CALL ErD_OP1Not R

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 215

ErrD_OP1NotPos

Category: Error

Description: If OP1 is not positive, domain error system will take over with message
ERR: DOMAIN.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers A
destroyed:
Remarks:
Example: B_CALL ErrD_OP1NotPos

TI-83 Plus Developer Guide Initial Release October 29, 1999

216

Appendix A: System Routines — Error

ErrD_OP1NotPosint

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If OP1 is not positive integer, domain error system will take over with message

ERR: DOMAIN.

None
None
None

None
None
None
A

B_CALL ErrD_OP1NotPosInt

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 217

ErrDataType

Category: Error
Description: Jumps to system error handler routine with the message ERR: DATA TYPE.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrDataType

TI-83 Plus Developer Guide Initial Release October 29, 1999

218

Appendix A: System Routines — Error

ErrDimension

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: INVALID DIM.

None
None
None

None

None
None

B_JUMP

ErrDimension

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error

219

ErrDimMismatch

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: DIM
MISMATCH.

None
None
None

None

None
None

B_JUMP

ErrDimMismatch

TI-83 Plus Developer Guide

Initial Release October 29, 1999

220

Appendix A: System Routines — Error

ErrDivByO

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: DIVIDE BY 0.

None
None
None

None

None
None

B_JUMP

ErrDivByO

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 221

ErrDomain

Category: Error

Description: Jumps to system error handler routine with the message ERR: DOMAIN.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrDomain

TI-83 Plus Developer Guide Initial Release October 29, 1999

222

Appendix A: System Routines — Error

Errincrement

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: INCREMENT.

None
None
None

None

None
None

B_JUMP

Errincrement

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 223

Errinvalid

Category: Error

Description: Jumps to system error handler routine with the message ERR: INVALID.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP Errinvalid

TI-83 Plus Developer Guide Initial Release October 29, 1999

224

Appendix A: System Routines — Error

Errlterations

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: ITERATIONS.

None
None
None

None

None
None

B_JUMP

Errlterations

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 225

ErrLinkXmit

Category: Error
Description: Jumps to system error handler routine with the message ERR: IN XMIT.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrLinkXmit

TI-83 Plus Developer Guide Initial Release October 29, 1999

226

Appendix A: System Routines — Error

Jumps to system error handler routine with the message ERR: MEMORY.

ErrMemory
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP

ErrMemory

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 227

ErrNon_Real
Category: Error
Description: In Real mode, the result of a calculation yielded a complex result. This error is

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

not returned during graphing. The TI-83 Plus allows for undefined values on a
graph.

None
None
None

None
None
None

The error system will take over and report the error to the screen. Any
application that was executing at that time will be aborted.

B_JUMP ErrNon_Real

TI-83 Plus Developer Guide Initial Release October 29, 1999

228

Appendix A: System Routines — Error

ErrNonReal
Category: Error
Description:
ERR: DATA TYPE.
Inputs:
Registers: B = number of arguments to check.
Flags: None
Others: Arguments on Floating Point Stack.
Outputs:
Registers: None
Flags: None
Others: Error if nonreal input to command.
Screen will have data type error menu.
Registers A B
destroyed:
Remarks:
Example: B_CALL ErrNonReal

Errors if nonreal input to command error. System will take over with message

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error

229

ErrNotEnoughMem

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

If not enough memory, memory error system will take over with message

ERR: MEMORY.

HL = number of bytes needed.
None
None

DE = Amount of memory requested.

CA = 1 if not enough room.
None

B_CALL ErrNotEnoughMem

TI-83 Plus Developer Guide

Initial Release October 29, 1999

230

Appendix A: System Routines — Error

Jumps to system error handler routine with the message ERR: OVERFLOW.

ErrOverflow
Category: Error
Description:
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP

ErrOverflow

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error

231

ErrSignChange

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: NO SIGN
CHANGE.

None
None
None

None

None
None

B_JUMP

ErrSignChange

TI-83 Plus Developer Guide

Initial Release October 29, 1999

232

Appendix A: System Routines — Error

ErrSingularMat

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: SINGULARITY.

None
None
None

None

None
None

B_JUMP

ErrSingularMat

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 233

ErrStat

Category: Error
Description: Jumps to system error handler routine with the message ERR: STAT.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrStat

TI-83 Plus Developer Guide Initial Release October 29, 1999

234

Appendix A: System Routines — Error

ErrStatPlot

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with the message ERR: STATPLOT.

None
None
None

None

None
None

B_JUMP

ErrStatPlot

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 235

ErrSyntax

Category: Error
Description: Jumps to system error handler routine with the message ERR: SYNTAX.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrSyntax

TI-83 Plus Developer Guide Initial Release October 29, 1999

236

Appendix A: System Routines — Error

ErrTolTooSmall

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Jumps to system error handler routine with message ERR: TOL NOT MET.

None
None
None

None

None
None

B_JUMP

ErrTolTooSmall

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 237

ErrUndefined

Category: Error
Description: Jumps to system error handler routine with the message ERR: UNDEFINED.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: B_JUMP ErrUndefined

TI-83 Plus Developer Guide Initial Release October 29, 1999

238

Appendix A: System Routines — Error

JError

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Error

Entry point into system error routine. This entry is almost always used in
conjunction with an error exception handler.

After an error exception handler is tripped and control is returned to an
application, the application may choose to modify the error by changing the
error to another or most likely removing the GoTo option. This entry point is
where the application would B_JUMP to continue on with the error after
modifying it.

See the Error Handers section in Chapter 2.

ACC bits (0 — 6) = error code
ACC bit (7) = 0 for no GoTo option
ACC bit (7) = 1 for allowing a GoTo option

None
None

None
None

(errNo) = error code (one-byte)
System error is displayed or another error.
Exception handler is tripped and the error is suppressed.

All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Error 239

JErrorNo

Category: Error
Description: Same as JError except the error code is stored in the byte (errNo).
Remarks: See JError.

TI-83 Plus Developer Guide Initial Release October 29, 1999

System Routines —
Floating Point Stack

Y Lo Tod ot = TR 241
Y | Lo Tod ot = 31 R 242
10401V A5 - o] QPSP 243

CpyO1ToFPST, CpyOl1lToFPS1, CpyOl1lToFPS2, CpyOlToFPS3,
CpyO1ToFPS4, CpyO1ToFPSS5, CpyO1ToFPS6, CpyO1ToFPS7,
CpyO2ToFPST, CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3,
CpyO2ToFPS4, CpyO3ToFPST, CpyO3ToFPS1, CpyO3ToFPS2,
CpyO5ToFPS1, CpyO5ToFPS3, CpyO6ToFPST, CpyO6ToFPS2.................. 244

CpyTolFPST, CpyTolFPS1, CpyTolFPS2, CpyTolFPS3,
CpyTolFPS4, CpyTolFPS5, CpyTolFPS6, CpyTolFPS7,
CpyTolFPS8, CpyTolFPS9, CpyTolFPS10, CpyTolFPS11,
CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2, CpyTo2FPS3,
CpyTo2FPS4, CpyTo2FPS5, CpyTo2FPS6, CpyTo2FPS7,
CpyTo2FPS8, CpyTo3FPST, CpyTo3FPS1, CpyTo3FPS2,

CpyTo4FPST, CpyTo5FPST, CpYTOBFPST, ..vvviiiiiieiiie e 245
CpYTOBFPS2, CPYTOBFPS3.. ... it e e 245
(002 101 =3) PN 246
(00)V 101 3 1 PN 247
(0 0)V 101 3 SR 248
(0 0)V 101 3 TG 2PN 249
(0 0}V K0 15 = U PSSR 250
POpPOPL, POPOP3, POPOPS ...ttt e e 251
POPREAL..... .o 252
PopRealO1, PopRealO2, PopRealO3, PopRealO4, PopRealO5,

POPREAIOB ... 253
PUshOP1, PUShOP3, PUShOPS........cccciiiiiiiiiiiiieieeeeeeeee et 254
U] 0] = - | T 255
PushRealO1, PushRealO2, PushRealO3,

PushRealO4, PushRealO5, PUShREaIO6oooviiiiiiiiiiiiiiiieeee e 256

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack

241

AllocFPS

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Allocates space on the Floating Point Stack by specifying a number of

nine-byte entries.

HL = number of entries to allocate
None
None

None
None

If no memory error, the new entries are allocated on the end of the FPS.

FPST = last new entry allocated.
All

No initialization of the allocated entries is done. See section on Floating Point

Stack.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

242

Appendix A: System Routines — Floating Point Stack

AllocFPS1

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

Floating Point Stack

Allocates space on the Floating Point Stack by specifying a number of bytes,
THIS MUST BE A MULTIPLE OF NINE.

HL = number of bytes to allocate — a multiple of nine.
None
None

None
None

If no memory error, the new entries are allocated on the end of the FPS.
FPST = last new entry allocated.

All

No check is made for the number of bytes being a multiple of nine. No
initialization of the allocated entries is done. See section on Floating Point
Stack.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack 243

CpyStack

Category:

Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from one of the systems nine-byte stacks, FPS and ES.
Only the FPS (Floating Point Stack) is documented for application use. This
routine should be used in the manner described in the example.

C = number of bytes from the next free byte in the stack back to the entry
copying from. This will always be a multiple of nine.

HL = address of next free byte for the stack, for the FPS the address is stored
in the bytes (FPS).

DE = pointer to the nine-bytes of RAM to copy the entry to.
None
None

HL = pointer to byte after the entry just copied from.
DE=DE+9

None
Nine bytes copied to the RAM from the stack entry.
All

See Floating Point Stack documentation.
Copy from FPS10 to OP2.

LD HL,(FPS) ; copy to FPS

LD DE,(OP2) ; start of 9 bytes to copy to
; FPS10

LD C,(10+1)*9 ; C = offset back to FPS10,
; 11*9 bytes

B_CALL CpyStack ; copy to OP2 from FPS10

TI-83 Plus Developer Guide Initial Release October 29, 1999

244

Appendix A: System Routines — Floating Point Stack

CpyOl1lToFPST, CpyOlToFPS1, CpyOl1lToFPS2,
CpyOl1lToFPS3, CpyO1lToFPS4, CpyOlToFPSS,
CpyOl1lToFPS6, CpyO1lToFPS7, CpyO2ToFPST,
CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3,
CpyO2ToFPS34, CpyO3ToFPST, CpyO3ToFPS1,
CpyO3ToFPS2, CpyO5ToFPS1, CpyO5ToFPS3,
CpyO6ToFPST, CpyO6ToFPS2

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

This description covers a group of routines that copies a single nine-byte OP
register (OP1 — OP6), to an entry on the Floating Point Stack (FPS).
For example, CpyO1ToFPS2: OP1 is copied to (FPS2).

None
None

OP register = 9 bytes to copy to FPS entry
For example, CpyO1ToFPS2: OP1 = nine-bytes to copy

DE = FPS entry following the one copied to
For example, CpyO1ToFPS2: DE = address of FPS1

HL = OP register + 9
For example, CpyO1ToFPS2: HL=0P1 +9

None

OP register = copy of the nine-byte FPS entry
For example, CpyTolFPS2: OP1 = FPS2 entry

All
The OP register is written to.

These routines do not allocate or deallocate entries. See entry point
CpyToStack . See entry point CpyTolFPST . See Floating Point Stack section
of Chapter 2.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack 245

CpyTolFPST, CpyTolFPS1, CpyTolFPS2,
CpyTolFPS3, CpyTolFPS4, CpyTolFPSS5,
CpyTolFPS6, CpyTolFPS7, CpyTolFPSS,
CpyTolFPS9, CpyTolFPS10, CpyTolFPS11,
CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2,
CpyTo2FPS3, CpyTo2FPS4, CpyTo2FPS5,
CpyTo2FPS6, CpyTo2FPS7, CpyTo2FPSS,
CpyTo3FPST, CpyTo3FPS1, CpyTo3FPS2,
CpyTo4FPST, CpyTo5FPST, CpyTo6FPST,
CpyTo6FPS2, CpyTo6FPS3

Category: Floating Point Stack

Description: This description covers a group of routines that copies a single nine-byte entry
from the Floating Point Stack (FPS), to one of the OP registers (OP1 — OP6).
For example, CpyTolFPS2: (FPS2) is copied to OP1.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:

Registers: HL = FPS entry following one copied
For example, CpyTolFPS2: HL = address of FPS1

DE = OP register + 9
For example, CpyTolFPS2: DE =0OP1 +9

Flags: None

Others: OP register = copy of the nine-byte FPS entry
For example, CpyTolFPS2: OP1 = FPS2 entry

Registers All

destroyed: The OP register is written to.

Remarks: These routines do not allocate or deallocate entries. See entry point
CpyStack . See entry point CpyO1ToFPST . See Floating Point Stack section
of Chapter 2.

Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

246

Appendix A: System Routines — Floating Point Stack

CpyToFPST

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack
Copies nine-bytes from RAM/ROM to FPST, Floating Point Stack top entry.

DE = address of nine-bytes to copy to FPST
None
None

HL = input DE + 9
DE = (FPS), next free byte on the stack

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack

247

CpyToFPS1

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from RAM/ROM to FPS1, Floating Point Stack top entry -1.

DE = address of nine-bytes to copy to FPS1
None
None

HL = input DE + 9
DE = pointer to FPST entry

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

248

Appendix A: System Routines — Floating Point Stack

CpyToFPS2

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from RAM/ROM to FPS2, Floating Point Stack top entry -2.

DE = address of nine-bytes to copy to FPS2
None
None

HL = input DE + 9
DE = pointer to FPS1 entry

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack

249

CpyToFPS3

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes from RAM/ROM to FPS3, Floating Point Stack top entry -3.

DE = address of nine-bytes to copy to FPS3
None
None

HL = input DE + 9
DE = pointer to FPS2 entry

None
None
All

See Floating Point Stack documentation.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

250

Appendix A: System Routines — Floating Point Stack

CpyToStack

Category:

Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Copies nine-bytes to one of the systems nine-byte stacks, FPS and ES. Only
the FPS (Floating Point Stack) is documented for application use. This routine
should be used in the manner described in the example.

C = number of bytes from the next free byte in the stack back to the entry
copying to. This will always be a multiple of nine.

HL = address of next free byte for the stack, for the FPS the address is stored
in the bytes (FPS).

DE = pointer to the nine-bytes to copy to the stack.
None
None

HL = pointer to byte after the entry just copied to.
DE=DE+9

None
Nine-bytes copied to the stack entry.
All

See Floating Point Stack documentation.
Copy from OP2 to FPS10.

LD HL,(FPS) ; copy to FPS

LD DE,(OP2) ; start of 9 bytes to copy to
; FPS10

LD C,(10+1)*9 ; C = offset back to FPS10,
; 11*9 bytes

B_CALL CpyToStack ; copy to FPS10

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack

251

PopOP1, PopOP3, PopOP5

Category:

Description:

Input:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:
RAM used:

Remarks:

Example:

Floating Point Stack

This description covers three entry points that are similar. The description is
given for PopOP1. The inputs/outputs are the same for the other two routines
replacing OP1/OP2 with either OP3/OP4 or OP5/OP6.

These routines will pop either one or two floating-point numbers off of the top
of the FPS. They are used to either pop a real or a complex value off of the top
of the FPS without knowing in advance whether a real or a complex value is
on the top of the stack.

The top entry (FPST) is popped into OP1. The sign byte of the popped value in
OPL1 is checked for CplxObj. If it is complex, OP1 is moved to OP2 and the
new FPST is popped into OPL1. If it is not complex, the floating-point number
popped into OP1 is left there.

None
None
None

None
None

If the data type of FPST = RealObj then OP1 = FPST

If the data type of FPST = CplxObj then OP1 = FPS1,

the real part of the complex value

OP2 = FPST, the imaginary part of the complex value.

All

OP1/0OP2 or OP3/0OP4 or OP5/0OP6 depending on which of the routines is
used.

When using this routine make sure that the FPST entry is not a complex
variable name. If it is, it will be interpreted as a complex value causing two
floating-point numbers to be popped from the FPS. See PopRealO1 and
PopMcpIxO1 . See Floating Point Stack section.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

252

Appendix A: System Routines — Floating Point Stack

PopReal

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Pops the last entry FPST, off of the FPS to an input RAM location. No matter
what the data in FPST is only nine (9) bytes are popped off of the stack.

DE = pointer to RAM location to pop FPST into
None
None

DE=DE+9
None

The nine-byte entry FPST is removed from the FPS and copied to the
nine-bytes starting at address DE.

All but the ACC

The entry is removed from the FPS shrinking the size of the FPS by
nine-bytes. See the Floating Point Stack section.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack 253

PopRealO1, PopRealO2, PopRealO3, PopRealO4,
PopRealO5, PopRealO6

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

This description covers six entry points that are similar. The description is
given for PopRealO1. The inputs/outputs are the same for the other five
routines replacing OP1 with either OP2, OP3, OP4, OP5 or OP6.

Pops the last entry FPST, off of the FPS to OP1. No matter what the data in
FPST is, only nine (9) bytes are popped off of the stack.

None
None
None

None
None

The nine-byte entry FPST is removed from the FPS and copied to the
nine-bytes starting at address OP1.

The entry is removed from the FPS shrinking the size of the FPS by
nine-bytes. See PopOPL1. See the Floating Point Stack section.

TI-83 Plus Developer Guide Initial Release October 29, 1999

254

Appendix A: System Routines — Floating Point Stack

PushOP1, PushOP3, PushOP5

Category:

Description:

Input:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Floating Point Stack

This description covers three entry points that are similar. The description is
given for PushOP1. The inputs/outputs are the same for the other two routines
replacing OP1/OP2 with either OP3/OP4 or OP5/OP6.

These routines will push either one or two floating-point numbers onto the
FPS. It is used to either push a real or a complex value onto the FPS without
knowing in advance whether a real or a complex value is being pushed onto
the stack.

The sign byte of OP1 is checked for CpIxObj. If it is Complex, OP1 is pushed
on to the stack and the OP2 is pushed onto the stack. If it is not complex, the
floating-point number in OP1 is only pushed onto the stack.

None
None
None

None
None

If the data type of OP1 = RealObj then FPST = OP1

If the data type of OP1 = CplxObj then FPS1 = OP1,
the real part of the complex value

FPST = OP2, the imaginary part of the complex value.

All

None

When using this routine make sure that the OP1 is not a complex variable
name. If it is it will be interpreted as a complex value causing two floating-point
numbers to be pushed onto the FPS. See PushRealO1 , PushMcpIxO1 . See
the Floating Point Stack section.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Floating Point Stack

255

PushReal

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

Pushes a new entry onto the FPS and copy the nine-bytes at address HL into
the new entry. No checks are made on the data that is put onto the stack.

HL = pointer to nine-bytes to push onto the FPS
None
None

HL=HL+9

None

FPST = nine-bytes at HL pushed onto the stack
All

The previous FPST is now entry FPS1. See PushRealO1, PushOP1. See the
Floating Point Stack section.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

256

Appendix A: System Routines — Floating Point Stack

PushRealO1, PushRealO2, PushReal O3,
PushRealO4, PushRealO5, PushRealO6

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Floating Point Stack

This description covers six entry points that are similar. The description is
given for PushRealO1. The inputs/outputs are the same for the other five
routines replacing OP1 with either OP2, OP3, OP4, OP5 or OP6.

Pushes a new entry onto the FPS and copy the nine-bytes at OP1 into the new
entry. No checks are made on the data that is put onto the stack.

None
None
OP1 = nine-bytes to push onto the FPS

None
None
FPST = nine-bytes at OP1 pushed onto the stack

The previous FPST is now entry FPS1. See PushReal , PushOP1. See the
Floating Point Stack section.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
Graphing and Drawing

1| o PSSP 259
BUTCIE e e e ——— 260
21011 o YRR 261
L4 o @4 1 4o 262
(O[T T = L= ox PP 264
L I o = PSSP 265
(O I T SRR 267
CIrGIraPNRES e e 269
Lo 1 o | PSSR 269
(O =0] 0| 15 S 272
= T (I = PP 274
= T) PP 276
D 11 o 1SR 278
D= 1YL O oSSR 279
D = 1Y 4 2 T S 281
DrawWRECIBOIUEYii e 282
DrawReCtBOrderCIEAr........uuueiie it e e e e e 283
EraSERECIBOIUEY ... i e 284
111 o S 285
1Tt = 11 (=T o P 287
1] = | PSPPSR 289
LT =T (@ o) P 290
L€] 0[O | oSSR 291
[[0 74 4 2 1 T PP 292
12 Lo 0T Lo £ PPR 293
IBOUNASFUIL ... e e e e e e 294
| 295
11V O 1 o SRR 297
LY 1Y o O 298
1@ 115 SR PPPR 299
1o o | P 300
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

258 Appendix A: System Routines — Graphing and Drawing

Contents (continued)

] =T 1 o U 302
PSP GIPN. e e 304
Do =] P 305
0] 1 (@4 1 4o 1S 306
0] 01 (@ o PP 308
=T | = o TP 309
Y= 7N]| o £ 310
SEUFUNCM ... e e et e et et e e e e et e e e e et e e aeae 311
SEIPAIM L. e aae 312
SEEPOIM ... e aaaaaaann 313
ST IS0 Y PRSPPI 314
SetThIGraphDIAW.........vuiiiieii e e e e e e 315
L= L] PP 316
L@ I =3 317
UNLINECMA ...t e e e e e e e e e e e e e aeaanaaans 318
RV 4 (4 o o [SSPPTSRT 319
VEIOWHLDE ...t e e e e et e e e e e e e eeaaene 320
D41 (o | PSR 321
D10 PP 322
41 (| PSR 323
A 4 1T o] SR 324
4 21 | PP 325
74 2 11 | S RPN 326
4 0 0] (Y USRI 327
A 0 01T [U= = PPN 328
A 301 = 13U SPR 329
74 2 1 1 o P 330
74 2 01 PPN 331
ZOODETAUIL......eeei e ——————— 332

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 259

AllEq

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing
Select or deselect all graph equations in the current graph mode.

ACC = 3 to select all equations in the current graph mode
= 4 to deselect all equations in the current graph mode

Current graph mode: 1Y + grfModeFlags = flag byte

None

None

None

All graph equations for the current mode are deselected.
All

OP1, OP2

TI-83 Plus Developer Guide Initial Release October 29, 1999

260

Appendix A: System Routines — Graphing and Drawing

BufClr

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Executes the routine GrBufCIr on a bitmap of the graph screen other than
plotSScreen , the system graph backup buffer.

HL = pointer to start of graph buffer to clear, 768 bytes
None
None

None

None

RAM cleared.
All

G-T and Horizontal modes will affect how much of the buffer is cleared. In
order to have the entire buffer cleared set to full screen mode.

There are two additional bit image display buffers allocated other than
plotSScreen , they start at addresses appBackUpScreen and saveSScreen .

LD HL,appBackUpScreen

B_CALL BufClIr ; clear backup

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 261

BufCpy

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Executes the routine GrBufCpy on a bitmap of the graph screen other that
plotSScreen , the system graph backup buffer. The contents of the buffer are
displayed.

HL = pointer to start of graph buffer to display, 768 bytes
None
None

None
None
None
All

G-T and Horizontal modes will affect how much of the buffer is displayed. In
order to have the entire buffer displayed, set to full screen mode.

There are two additional bit image display buffers allocated other than
plotSScreen , they start at addresses appBackUpScreen and saveSScreen .

LD HL,appBackUpScreen
B_CALL BufCpy ; display backup buffer

TI-83 Plus Developer Guide Initial Release October 29, 1999

262 Appendix A: System Routines — Graphing and Drawing

CircCmd

Category: Graphing and Drawing
Description: Displays the current graph screen and draws a circle on the graph screen
given the center and the radius, relative to the current window settings.
Inputs:
Registers: None

Flags: useFastCirc, (1Y + plotFlag3) = 1 for fast circle routine that draws the circle in
sections simultaneously
useFastCirc, (IY + plotFlag3) = 0 for normal circle routine that draws in a
circular direction

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

Others: FPST = radius, a floating-point number
FPS1 =Y value of center, a floating-point number
FPS2 = X value of center, a floating-point number

The center specified is with respect to the current window settings.

Outputs:
Registers: None
Flags: None
Others: Current graph, and point operation are drawn to the screen and the graph

backup buffer, plotSScreen .
Inputs are removed from the Floating Point Stack.

Registers All
destroyed:
Remarks: If a zoom square is not done before using this routine the output circle will

most likely not look circular but skewed in either the X or Y axis direction.
If useFastCirc is used, the flag must be reset by the caller.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

263

CircCmd (continued)

Example:

the alternate fast circle draw.

B_CALL
B_CALL
RST
RST

B_CALL
RST

SET

AppOnErr

B_CALL

AppOffErr

RES
RET

come here if error

ClrFlag:

RES

B_JUMP

ZooDefault
OP1Set0
rPushRealO1
rPushRealO1

OP1Set3
rPushRealO1

useFastCirc,(IY+plotFlag3)

ClrFlag

CircCmd

useFastCirc,(IY+plotFlag3)

useFastCirc,(IY+plotFlag3)

JErrorNo

; standard window
;OP1=0

; (0,0) pushed
; onto FPS

; radius is 3
; 3 pushed onto
, FPS

; fast circle

; routine
; set up error

; handler to clear
; fast circle flag

, remove no error

; reset flag

; reset flag

; continue on with
; system error
; handle

Execute a zoom standard and then draw a circle at (0,0) with radius 3 using

TI-83 Plus Developer Guide

Initial Release October 29, 1999

264

Appendix A: System Routines — Graphing and Drawing

ClearRect
Category: Graphing and Drawing
Description: Clears a rectangular area on the screen (to Pixel off).
Inputs:
Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column
Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers None
destroyed:
Remarks: Rectangle is defined by pixel coordinates, where row = 0, column = 0 is upper
left corner of screen and row = 63, column = 95 is lower right corner of screen.
Area includes row and column of both coordinates.
Inputs must satisfy conditions: D > H, E > L.
Modifies saveSScreen RAM area.
Example: LD HL,0000h
LD DE,3F5Fh
B_CALL FillRect ; Make the whole screen
LD H,0
LD L,48
LD D,31
LD E,95
B_CALL ClearRect ; Clear the screen's top
; right quarter
B_CALL GetKey ; Get key press
B_JUMP JForceCmdNoChar ; Exit app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

265

CLine

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing

Draws a line between two points specified by graph coordinates. The line is
plotted according to the current window settings Xmin, Xmax, Ymin, Ymax.

The points do not need to lie within the current window settings this routine will
clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

OP4 — Y1-coordinate
OP3 — X1-coordinate
OP2 — Y2-coordinate
OP1 — X2-coordinate

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags) = 1 if horizontal split mode set
vertSplit, (IY + sGrFlags) = 1 if graph-table split mode set
grfSplitOverride, (IY + sGrFlags) = 1 to ignore split modes
plotLoc, (IY + plotFlags) = 1 to draw to the display only

= 0 to draw to display and plotSScreen buffer.
bufferOnly, (IY + plotFlag3) = 1 to draw to plotSScreen buffer only.

None

None
None
None
All

OP1 - OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

266

Appendix A: System Routines — Graphing and Drawing

CLine (continued)

Example:

Point_1:

Point_2:

LD

LD
LD
LDIR
LD

B_CALL
B_CALL

B_CALL
RET

DB
DB

DB
DB

HL,Point_1

DE,OP3
BC,18

HL,Point_2

Mov9OP10P2
PushMCpIxO1

CLine
0,80h,15h,0,0,0,0,0,0
0,80h,30h,0,0,0,0,0,0

0,80h,40h,0,0,0,0,0,0
0,80h,60h,0,0,0,0,0,0

;1.5

; Draw a line between
; the points (1.5,3)
; & (4,6):

; point to (1.5,3) in

; ROM

; point to (4,6) in

; ROM
;OP1=40P2=6

; draw the line

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

267

CLineS

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing

Draws a line between two points specified by graph coordinates. The line is
plotted according to the current window settings Xmin, Xmax, Ymin, Ymax.

The points do not need to lie within the current window settings this routine will
clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

FPS2 — Y1-coordinate
FPS3 — X1-coordinate
FPS1 — Y2-coordinate
FPST — X2-coordinate

plotLoc, (IY + plotFlags) 1 to draw to the display only
0 to draw to display and plotSScreen buffer

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags)
vertSplit, (1Y + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)

1 if horizontal split mode set
1 if graph-table split mode set
1 to ignore split modes

None

None
None
None
All

OP1 - OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

268 Appendix A: System Routines — Graphing and Drawing

CLineS (continued)

Example: : Draw a line between

; the points (1.5,3)
; & (4,6):

LD HL,Point_1 ; point to (1.5,3) in
; ROM

B_CALL Mov9OP10P2 ;OP1=150P2=3

B_CALL PushMCplIxO1 ; push OP1 and then
; OP2 onto the FPS

LD HL,Point_2 ; point to (4,6) in
; ROM

B_CALL Mov9OP10P2 ;OP1=40P2=6

B_CALL PushMCpIxO1 ; push OP1 and then
; OP2 onto the FPS

B_CALL CLineS ; draw the line

RET

Point_1:
DB 0,80h,15h,0,0,0,0,0,0 ;1.5
DB 0,80h,30h,0,0,0,0,0,0 ;3
Point_2:
DB 0,80h,40h,0,0,0,0,0,0 4
DB 0,80h,60h,0,0,0,0,0,0 ; 6

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

269

ClrGraphRef

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Clears all graph reference flags in the symtable and the temporary symtable.

None
None
None

None

None

Graph reference reset
HL, DE, BC

B_CALL CiIrGraphRef

TI-83 Plus Developer Guide

Initial Release October 29, 1999

270

Appendix A: System Routines — Graphing and Drawing

CPoint

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Turns on, turns off, or inverts a point in the display specified by graph
coordinates. The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

ACC = what to do
0: turn point off

1: turn point on

2: invert point

G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

OP1 — X Coordinate of point
OP2 — Y Coordinate of point

None
None
None

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

271

CPoint (continued)

Example: Draw a point in the graph window at coordinates (1.5,3):
LD HL,Point_1 ; point to (1.5,3)
B_CALL Mov9OP10P2 ;OP1=150P2=3
LD Al ; turn on
B_CALL CPoint ; draw the point
RET
Point_1:
DB 0,80H,15H,0,0,0,0,0,0 ;1.5
DB 0,80H,30H,0,0,0,0,0,0 ;3

TI-83 Plus Developer Guide

Initial Release October 29, 1999

272

Appendix A: System Routines — Graphing and Drawing

CPointS

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing

Turns on, turns off or inverts a point in the display specified by graph
coordinates. The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

ACC = what to do
0: turn point off

1: turn point on

2: invert point

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

FPS1 — X Coordinate of point
FPST — Y Coordinate of point

None
None
None

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

273

CPointS (continued)

Example: Draw a point in the graph window at coordinates (1.5,3)

LD HL,Point_1 ; point to (1.5,3)
; iIn ROM

B_CALL Mov9OP10P2 ;OP1=150P2=3

B_CALL PushMCpIxO1 ; push OP1 and then
; OP2 onto the FPS

LD Al ; turn on

B_CALL CPointS ; draw the point

RET

Point_1:
DB 0,80H,15H,0,0,0,0,0,0 ;1.5
DB 0,80H,30H,0,0,0,0,0,0 ;3

TI-83 Plus Developer Guide

Initial Release October 29, 1999

274 Appendix A: System Routines — Graphing and Drawing

DarkLine

Category: Graphing and Drawing
Description: Draws a line between two pixel points defined by their pixel coordinates.
Inputs: The graph window is defined with the lower left corner of the display to be pixel

coordinate (0,0).

The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row 0.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFlg4)

Registers: X = column
Y = row

B = X-coordinate of first point — 0...94 (95) see above
C = Y-coordinate of first point — 1(0)...63

D = X-coordinate of second point — 0...94 (95)

E = Y-coordinate of second point — 1(0)...63

1 to use column 95 and row O

1 to draw to the display only

0 to draw to display and plotSScreen buffer
1 to draw to plotSScreen buffer only

Flags: fullScrnDraw, (1Y + apiFlg4)
plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlag3)

Others: None
Outputs:
Registers: None
Flags: None
Others: Line drawn where specified.
Registers All registers are preserved.
destroyed:
Remarks: If the draw is going to the buffer then the contents of the buffer are used to

draw the line and copied to the screen.
No clipping, X, Y points assumed to be defined on the screen.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes.
See ForceFullScreen .

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 275

DarkLine (continued)

Example: : Clear the screen.
; Draw a line in the display only, between pixel coordinates (25,30)
; and (62,50):
B_CALL CIrLCD ; Clear the screen;
LD BC,25*256+30 ; 1st point, B = 25,
;C=30
LD DE,62*256+50 ; 2nd point, D = 62,
; E=50
SET plotLoc,(IY+plotFlags) ; display only
B_CALL DarkLine ; draw the line

TI-83 Plus Developer Guide Initial Release October 29, 1999

276

Appendix A: System Routines — Graphing and Drawing

DarkPnt

Category:

Description:

Inputs:
Registers:

Flags:

Others:

Outputs:
Registers:
Flags:
Others:

Registers

destroyed:

Remarks:

Graphing and Drawing

Turns on a point in the display specified by graph coordinates.
The point is plotted according to the current window settings:
Xmin, Xmax, Ymin, Ymax.

This routine should only be used to draw points in reference to the window
settings.

IPoint can be used to draw points by defining points with pixel coordinates,
which causes a faster draw.

None

G-T and HORIZ split screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split-screen modes.
See ForceFullScreen .

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)
plotLoc, (IY + plotFlags)

1 if horizontal split mode set

1 if graph-table split mode set

1 to ignore split modes

1 to draw to the display only

0 to draw to display and plotSScreen
buffer.

1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

OP1 — X Coordinate of point
OP2 — Y Coordinate of point

None
None

None

This routine does not copy the graph buffer to the screen or invoke a regraph,
if needed. Use PDspGrph to make sure the graph in the screen is valid.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

277

DarkPnt (continued)

Example: Draw a point in the graph window at coordinates (1.5,3):
LD HL,Point_1 ; point to (1.5, 3)
; in ROM
B_CALL Mov9OP10P2 ;OP1=150P2=3
B_CALL DarkPnt ; draw the point
RET
Point_1:
DB 0,80h,15h,0,0,0,0,0,0 ;1.5
DB 0,80h,30h,0,0,0,0,0,0 ;3

TI-83 Plus Developer Guide

Initial Release October 29, 1999

278

Appendix A: System Routines — Graphing and Drawing

Disp
Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Checks if graph screen is in the display. If it is, restores the text shadow to the
screen.

None
None
None

None

shiftFlags, textFlags
curRow, curCol, winTop
All

This is intended to be used when an application uses both the home screen
and the graph screen.

Using this routine allows the application to switch between the home screen
and the graph screen without having to rebuild the home screen.

When switching to the graph screen, all of the text previously written to the
home screen should have been also written to the text shadow.

The plotLoc flag should be set when switching to the graph screen.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

DrawCirc2
Category: Graphing and Drawing
Description: Draws a circle given the center and the radius, relative to the current window
settings.
The current graph screen is not put into the display by this routine.
This icircle routine is one of two available, and is the faster of the two.
Inputs:
Registers: None
Flags: plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = O to draw to display and buffer
bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only
Others: FPST = radius, a floating-point number
FPS1 =Y value of center, a floating-point number
FPS2 = X value of center, a floating-point number
The center specified is with respect to the current window settings.
Outputs:
Registers: None
Flags: None
Others: Circle is drawn either to the display, the buffer, or both.
Inputs are removed from the Floating Point Stack.
Registers All
destroyed:
Remarks: If a zoom square is not done before using this routine the output circle will

most likely not look circular but skewed in either the X or Y axis direction.
See CircCmd . See Floating Point Stack section.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

280

Appendix A: System Routines — Graphing and Drawing

DrawCirc2 (continued)

Example:

B_CALL
B_CALL

B_CALL
RST
RST

B_CALL
RST

AppOnErr
B_CALL
AppOffErr

RET

; come here if error
Circerr:

Execute a zoom standard and then draw a circle at (0,0) with radius 3.

ZooDefault ; standard window
PDspGrph ; get current graph to the
; display

OP1Set0 ; ORPL=0
rPushRealO1

rPushRealO1 ; (0,0) pushed onto FPS
OP1Set3 ; radius is 3
rPushRealO1 ; 3 pushed onto FPS
circerr ; set up error handler
DrawCirc2 ;

, remove no error

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

281

DrawCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Graphing and Drawing

Displays the current graph screen and draws a function on it. Same as
TI-83 Plus instruction DrawF.

None

graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be

redrawn
= 0 if graph buffer is up to date and is copied

to the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not

to the display
FPST = name of equation to evaluate and draw, with X being the independent
variable.

None
None

Current graph and function are drawn to the screen and the graph backup
buffer, plotSScreen .

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 - OP6

Errors can be generated during the draw, see Error Handlers section.
See section on Floating Point Stack

Draw Y1 on the graph screen.

LD HL,Y1name

B_CALL Mov9ToOP1 ;OP1=Y1
B_CALL PushRealO1 ; push Y1 into FPST
B_CALL DrawCmd ; draw

B_CALL PopRealO1 ; clean Y1 off of FPS

TI-83 Plus Developer Guide

Initial Release October 29, 1999

282

Appendix A: System Routines — Graphing and Drawing

Draws a rectangular outline on the screen.

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D > H, E>L

DrawRectBorder
Category: Graphing and Drawing
Description:
Inputs:
Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column
Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only
Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers None
destroyed:
Remarks:
of screen.
Modifies saveSScreen RAM area.
Example:

LD
LD
B_CALL

B_CALL
B_JUMP

HL,0000h
DE,3F5Fh
DrawRectBorder

GetKey
JForceCmdNoChar

; Draw an outline around
; the screen
; Get key press
; Exit app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 283

DrawRectBorderClear

Category: Graphing and Drawing

Description: Draws a rectangular outline on the screen and clears the area inside the
outline.

Inputs:

Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column

Flags: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

Others: None
Outputs:
Registers: None
Flags: None
Others: None
Registers None
destroyed:
Remarks: Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner
of screen.

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D > H, E > L.

Modifies saveSScreen RAM area.

Example:

B_CALL CIrLCDFull

LD H,32

LD L,48

LD D,63

LD E,95

B_CALL FillRect ; Blacken the screen's
; lower right quarter

B_CALL GetKey ; Get key press

LD HL,0000h

LD DE,3F5Fh

B_CALL DrawRectBorderClear ; Draw an outline
; around the screen and
; clear inside

B_CALL GetKey ; Get key press

B_JUMP JForceCmdNoChar ; Exit app

TI-83 Plus Developer Guide Initial Release October 29, 1999

284

Appendix A: System Routines — Graphing and Drawing

EraseRectBorder
Category: Graphing and Drawing
Description:
Inputs:
Registers:
Flags:
1: update display only
Others: None
Outputs:
Registers: None
Flags None
Others: None
Registers None
destroyed:
Remarks:
of screen.
Example:

Erases a rectangular outline on the screen (to white).

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):

0: update display and graph buffer

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

Area includes row and column of both coordinates.

Inputs must satisfy conditions: D > H, E>L

Modifies saveSScreen RAM area.

LD
LD
B_CALL

B_CALL
B_CALL

B_CALL
B_JUMP

HL,0000h
DE,3F5Fh
DrawRectBorder

GetKey
EraseRectBorder

GetKey

JForceCmdNoChar

; Draw an outline around the

; screen
; Get key press

; Erase an outline around

; the screen
; Get key press
; Exit app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

285

FillRect

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing
Fills a rectangular area on the screen (to black).

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

None

None
None
None
None

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

of screen.

Area includes row and column of both coordinates.
Inputs must satisfy conditions: D > H, E>L

Modifies saveSScreen RAM area.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

286

Appendix A: System Routines — Graphing and Drawing

FillRect (continued)

Example:

B_CALL

LD
B_CALL

B_CALL
LD
LD
LD
LD
B_CALL

B_CALL

LD
B_CALL

B_CALL
B_JUMP

CIrLCDFull
HL,1C2Ch
DE,2232h
FillRect

GetKey
H,0

L,0

D,63

E,95
InvertRect

GetKey
H,0000h
D,3F5Fh
InvertRect

GetKey
JForceCmdNoChar

; Clear the whole screen

; Put black square in
; screen center
; Get key press

; Turn to white square on
; black background
; Get key press

; Return to black square on
; white background
; Get key press
; Exit app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

287

FillRectPattern

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Graphing and Drawing
Fills a rectangular area on the screen with a pattern.

H = upper left corner pixel row

L = upper left corner pixel column
D = lower right corner pixel row

E = lower right corner pixel column

plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only

RectFillPHeight = pattern’s height in pixel rows (byte, 1 — 8)
RectFillPWidth = pattern’s width in pixel columns (byte, 1 — 8)
RectFillPattern = one-byte for each pattern pixel row

Pattern is right justified — bit O is right-most pixel in pattern row. First byte is
the top row of the pattern.

None
None
None
None

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is upper
left corner of screen and row = 63, column = 95 is lower right corner of screen.

Area includes row and column of both coordinates.

Inputs must satisfy conditions: D > H, E > L.

You should not use the right-most column (95). This routine fails if you try to
use it.

Modifies saveSScreen RAM area.

The pattern is written across the screen and is truncated at the right edge of
the specified rectangle. The pattern will also be truncated at the bottom of the
rectangle if needed.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

288

Appendix A: System Routines — Graphing and Drawing

FillRectPattern

Example:

MyPattern:

(continued)

B_CALL
LD

LD
LD

LD
LD

LD

LD
LDIR

LD
LD

B_CALL
B_CALL

B_JUMP
DB

CIrLCDFull
A6

(RectFillPHeight),
A
A4

(RectFillPWidth),A
HL,MyPattern

DE,RectFillPattern
BC,6

HL,1F2Fh
DE,3F5Eh

FillRectPattern

GetKey

JForceCmdNoChar
OFh, 07h, 03h, 01h, 03h, 07h

; Clear the whole screen
; Pattern is 6 pixels
; high

; Pattern is 4 pixels
; wide

; Copy source is the
; pattern in this code
; Copy destination is the
; pattern buffer
; Copy 6 bytes
; Copy pattern to pattern
; buffer

; Coordinates of the full
; screen except last
; column
; Fill it with the
; pattern
; Get key press
; Exit app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

289

GrBufClr

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Clears out the graph backup buffer plotSScreen .

None
None
None

None

None

All 768 bytes of plotSScreen set to 0.
All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

290

Appendix A: System Routines — Graphing and Drawing

GrBufCpy

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Copies the graph backup buffer plotSScreen to the display.

None
None
(winBtm) should be = 8

None

None

Graph buffer sent to display.
All

Both vertical and horizontal split setting will affect what is copied to the screen.

See ForceFullScreen . See RestoreDisp .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

291

GrphCirc

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Draws a circle on the screen given the pixel coordinates of the center and a
point on the circle.

None
useFastCirc, (1Y + plotFlag3) = 1 for fast circle routine that draws the circle in
sections simultaneously

useFastCirc, (IY + plotFlag3) = 0 for normal circle routine that draws in a
circular direction

plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = O to draw to display and buffer
bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only.

Pixel coordinates for the center and a point on the circle. Coordinate (0,0) is
the pixel in the lower left corner of the display, (x,y).

(curGX2) = x coordinate of center
(curGY2) =y coordinate of center

(curGX) = x coordinate of point on the circle
(curGY) =y coordinate of point on the circle

None

None

Circle drawn on the display.
All

The graph screen does not have to be displayed. The current window settings
have no affect. If useFastCirc is used, the flag must be reset by the caller. See
CircCmd and DrawCirc2 routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

292

Appendix A: System Routines — Graphing and Drawing

HorizCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing
Displays the current graph screen and draws a horizontal line at X = OP1.
Same as TI-83 Plus instruction Horizontal.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty, and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen.

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

OP1 = X value to draw the horizontal line at.

None
None

Current graph and the line are drawn to the screen and the graph backup
buffer, plotSScreen .

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 - OP6

Draw a horizontal line at X = 3 on the graph screen.

B_CALL OP1Set3 ;OP1=3

B_CALL HorizCmd ; draw the line

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

293

IBounds

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Tests if a pixel coordinate lies within the graph window defined by the current
split mode settings.

B = X pixel coordinate
C =Y pixel coordinate

The current split screen setting.
None

None

CA = 1 if out of graph window
= 0 if in graph window

Line drawn where specified.
All registers are preserved.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes. See
ForceFullScreen and IBoundsFull routines for further information.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

294

Appendix A: System Routines — Graphing and Drawing

IBoundsFull
Category: Graphing and Drawing
Description: Tests if a pixel coordinate lies within the full pixel range of the display. Full
screen mode should be active when using this routine. Valid values will include
all 64 rows and 96 columns of the display. Normally only 63 rows and 95
columns are valid.
Inputs:
Registers: B = X pixel coordinate
C =Y pixel coordinate
Flags: The current split screen setting.
Others: None
Outputs:
Registers: None
Flags: CA = 1 if out of graph window
=0 if in graph window
Others: Line drawn where specified.
Registers All registers are preserved.
destroyed:
Remarks: G-T and HORIZ split screen modes will affect how this routine maps the

coordinates specified. To avoid this, turn off the split screen modes. See the
ForceFullScreen and IBounds routines for further information.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 295

ILine

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Graphing and Drawing

Draws a line between two-pixel points defined by their pixel coordinates.
The line drawn can be on, off, or inverted.

The graph window is defined with the lower left corner of the display to be pixel
coordinates (0,0).

The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row O.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFlg4)

X = column
Y = row

B — X Coordinate of first point — 0...94 (95) see above
C — Y Coordinate of first point — 1(0)...63

D — X Coordinate of second point — 0...94 (95)

E — Y Coordinate of second point — 1(0)...63

H — Type of line to draw

0 — Set points to light, on-line

1 — Set points to dark

2 — Invert points (XOR operation)

1 to use column 95 and row O

1 to draw to the display only

0 to draw to display and plotSScreen buffer
1 to draw to plotSScreen buffer only

fullScrnDraw, (1Y + apiFlg4)
plotLoc, (IY + plotFlags)

bufferOnly, (IY + plotFlag3)
None

None

None

Line drawn where specified.
All registers are preserved.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

296 Appendix A: System Routines — Graphing and Drawing

ILine (continued)

Remarks: If the draw is going to the buffer, then the contents of the buffer are used to
draw the line and copied to the screen.

G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this. turn off the split-screen modes.
See ForceFullScreen .

No clipping, X, Y points assumed to be defined on the screen.

Example: Erase a line in the display only, between pixel coordinates (25,30) and (62,50).
LD BC,25*256+30 ; 1st point, B=25,
; C=30
LD DE,62*256+50 ; 2nd point, D=62,
; E=50
SET plotLoc,(lY+plotFlags) ; display only
LD H,0 ; signal turn pixels
; off
B_CALL ILine ; draw the line

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

297

InvCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Graphing and Drawing
Displays the current graph screen and draws a function along the Y-axis.

The equation is evaluated with respect to X, but the value of X will range
between Ymin and Ymax, and the result of each evaluation will be the X
coordinate, and the Y coordinate will be the value of X. It is the same as
switching X and Y, and having Y be the independent variable. But it is
important to write the expression in terms of X.

Same as TI-83 Plus instruction DrawlInv.

None

graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied
to the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

FPST = name of equation to evaluate and draw

None
None

Current graph and function are drawn to the screen and the graph backup
buffer, plotSScreen .

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 - OP6

Errors can be generated during the draw — see Error Handlers section.
See section on Floating Point Stack.

Draw Y1 on the graph screen along the Y-axis.

LD HL,Y1name

B_CALL Mov9ToOP1 ;OP1=Y1
B_CALL PushRealO1 ; push Y1 into FPST
B_CALL InvCmd ; draw

B_CALL PopRealO1 ; clean Y1 off of FPS

TI-83 Plus Developer Guide

Initial Release October 29, 1999

298

Appendix A: System Routines — Graphing and Drawing

Inverts a rectangular area on the screen (black pixels to white; white pixels to

Rectangle is defined by pixel coordinates, where row = 0, column = 0 is the
upper left corner of screen and row = 63, column = 95 is the lower right corner

; Clear the screen

; HL = upper left corner
; DE = lower right corner

; Blacken entire screen

; HL = middle of screen
; DE = lower right corner

; Whiten lower right quadrant

InvertRect
Category: Graphing and Drawing
Description:
black).
Inputs:
Registers: H = upper left corner pixel row
L = upper left corner pixel column
D = lower right corner pixel row
E = lower right corner pixel column
Flags: None
Others: plotLoc, (IY + plotFlags):
0: update display and graph buffer
1: update display only
Outputs:
Registers: None
Flags: None
Others: None
Registers None
destroyed:
Remarks:
of screen.
Area includes row and column of both coordinates.
Inputs must satisfy conditions: D > H, E > L.
Modifies saveSScreen RAM area.
Example: B_CALL CIrLCDFull
LD HL,0
LD DE,3F5Fh
B_CALL InvertRect
LD HL,2030h
LD DE,3F5Fh
B_CALL InvertRect
B_CALL GetKey

; Get key press

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

299

|Offset

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Given a pixel location, computes the offset to add to the start address of the
graph buffer to the byte in the buffer containing that pixel.

Also returns the bit number in that byte for that pixel.

Also computes the row and column commands to set the LCD driver to the
display byte for that pixel.

Pixel's row and column coordinate, (0,0) = lower left pixel of the display.
B — Column coordinate value, (0 — 95)
C — Row coordinate value, (0 — 63)

None
None

ACC = bit that corresponds to the pixel’s location in the byte it resides in is set.
For example, pixel (0,0) would return with ACC = 80h, bit 7 is set.

HL = byte offset to add to the start address of the display buffer to the byte
that contains the pixel’s bit.

(curXRow) = row command to send to the LCD driver for that pixel.
(curY) = column command to send to the LCD driver for that pixel.

None
None
All but DE

Test if pixel (23,14) is set in the graph buffer plotSScreen .

LD BC,23*256+14 ; BC =23,14

B_CALL 10ffset

LD DE,plotSScreen ; start of graph buffer

ADD HL,DE ; add offset to byte with
; pixel

AND (HL) ; and pixels bit with byte
; in buffer

JR Z,Pixel_is_Off ; jump if pixel is not set
; in buffer

TI-83 Plus Developer Guide

Initial Release October 29, 1999

300 Appendix A: System Routines — Graphing and Drawing

IPoint

Category: Graphing and Drawing

Description: Executes one of the following pixel operations without displaying the current
graph screen:
Turn Off
Turn On
Change (invert)
Test
Copy

Inputs: The pixels are addressed with the lower left corner of the display being pixel
(0,0), (row,col)

The system does not normally draw in the last column, and the bottom row of
the screen, column 95 and row 0.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFlg4)

Registers: B = pixel row address — 0...94 (95 if full screen) see above

C =Y Coordinate of first point — 1(0)...63 (64 if full screen)
D = Function to perform

0 — Turn point off

1 — Turn point on

2 — Invert point (XOR operation)

3 — Test point

4 — Copy a point from buffer to the display

Flags: fullScrnDraw, (1Y + apiFlg4) = 1 to use column 95 and row 0

plotLoc, (IY + plotFlags) = 1 to draw to the display only
plotLoc, (IY + plotFlags) = O to draw to display and buffer

bufferOnly, (IY + plotFlag3) = 1 to draw to buffer only
Others: None
Outputs:
Registers: None

Flags: For option 3 (test)
Z =1 for point off
Z = 0 for point on

Others: None
Registers None, except for option 3 (test) then all.
destroyed:

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 301

IPoint (continued)

Remarks:

Example:

The test option always tests the buffer not the display. This means that in
order to use the test option the pixel tested must have been written to the
graph buffer.

If the buffer is specified then the contents of the buffer are used to draw/copy,
not what is in the screen.

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this turn off the split screen modes. See
ForceFullScreen .

If G-T mode is set then this routine will turn on pixels if the display byte
containing the center column of pixels is accessed. This is done to keep the
center line in G-T drawn.

Turn on the point specified by pixel coordinates at (5,10).

LD BC,5*256+10
LD D,1 ; point on cmd
B_CALL IPoint ; turn on the point

TI-83 Plus Developer Guide Initial Release October 29, 1999

302

Appendix A: System Routines — Graphing and Drawing

LineCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing
Displays the current graph screen and draws a line defined by two points.

These points are graph coordinates with respect to the current range settings.
They do not have to be points on the screen. If they are not on the screen the
line will still be drawn if it passes through the screen with the current range
settings.

Same as TI-83 Plus instruction Line(.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

points (X1, Y1) (X2, Y2), all are floating-point numbers
FPST = Y2 COORDINATE
FPS1 = X2 COORDINATE
FPS2 = Y1 COORDINATE
FPS3 = X1 COORDINATE

See Floating Point Stack section.

None
None

Current graph and line are drawn to the screen and the graph backup buffer,
plotSScreen .

Inputs are removed from the Floating Point Stack.
All

OP1 - OP6

Errors can be generated during the draw. See Error Handlers section. See
CLine and ILine to draw lines without graphing. See section on Floating Point
Stack.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

303

LineCmd (continued)

Example: Draw a line on the current graph screen between (1,2) and (3,4)
B_CALL OP1Setl ; OP1=X1
B_CALL PushRealO1 ; to FPS
B_CALL Plusl ;OP1=0P1+1,=VY1
B_CALL PushRealO1 ; to FPS
B_CALL Plusl ;OP1=0P1+1,=X2
B_CALL PushRealO1 ; to FPS
B_CALL Plusl ;OP1=0P1+1,=Y2
B_CALL PushRealO1 ; to FPS
B_CALL LineCmd ; copy graph to screen and

; draw line

TI-83 Plus Developer Guide

Initial Release October 29, 1999

304

Appendix A: System Routines — Graphing and Drawing

PDspGrph

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Tests if the graph of the current mode needs to be regraphed. If so, the graph
is regraphed, otherwise copies plotSScreen to the display.

None

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

Current graph window settings and equations

None
None
None
All

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this situation, turn off the split screen modes.
See the ForceFullScreen routine for further information.

Generate the current graph screen in the display.

B_CALL PDspGrph

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 305

PixelTest
Category: Graphing and Drawing
Description: Tests a pixel in the graph buffer specified by pixel coordinates without copying
the graph to the display.
Inputs: Pixel coordinate (0,0), (row,col), is the upper left most pixel.
FPST = Pixel coordinate’s column value, a floating-point number
(0 —94) in full screen and horizontal split
(0 — 46) in vertical split
FPS1 = Pixel coordinate’s row value, a floating-point number
(0 — 62) in full screen
(0 —30) in horizontal split
(0 —50) in vertical split
See Floating Point Stack section.
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: Z =1 for point off
Z = 0 for point on
Others: None
Registers All
destroyed:
Remarks:
Example: Test on the point specified by pixel coordinates at (5,10).

LD BC,5*256+10

B_CALL PixelTest ; test the point

TI-83 Plus Developer Guide Initial Release October 29, 1999

306

Appendix A: System Routines — Graphing and Drawing

PointCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Graphing and Drawing

Displays the current graph screen and executes one of the following point
operations:

Turn Off

Turn On

Change (invert)

The point is defined by graph coordinates with respect to the current range
settings. The point does not need to be on the screen, and if it is not, then
nothing will be drawn.

Same as TI-83 Plus instructions Pt-On(, Pt-Off(, Pt-Change(.

ACC = point command

0=0n
1 = Off
2 = Change
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

Bit 5 of RAM location (OP1 + 2) MUST =0
FPST =Y coordinate of the point, a floating-point number
FPS1 = X coordinate of the point, a floating-point number

None
None

Current graph and point operation are drawn to the screen and the graph
backup buffer plotSScreen .

Inputs are removed from the Floating Point Stack.
All

OP1 - OP6

Errors can be generated during the draw. See Error Handlers section. See
CPoint, CPointS , and IPoint for point commands without graphing.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

307

PointCmd (continued)

Example: Invert point at coordinate (1.5,2)
LD HL,fp_1p5
B_CALL Mov9ToOP1
B_CALL PushRealO1
B_CALL OP1Set2
B_CALL PushRealO1
LD A2
B_CALL PointCmd

; OP1 = X coordinate, 1.5

;to FPS

; OP1 =Y coordinate, 2, resets
; bit 5 (OP1 + 2)

;to FPS

; command to invert
; copy graph to screen and

; invert point

TI-83 Plus Developer Guide

Initial Release October 29, 1999

308

Appendix A: System Routines — Graphing and Drawing

PointOn

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Turns on a point specified by its pixel coordinates.

The graph window is defined with the lower left corner of the display to be pixel
coordinates (0,0).

The system graphing routines do not normally draw in the last column and the
bottom row of the screen, column 95 and row O.

This routine can be made to use column 95 and row 0 by setting the flag:
fullScrnDraw, (1Y + apiFlg4)

X = column

Y = row

B — X Coordinate of first point — 0...94 (95) see above
C — Y Coordinate of first point — 1(0)...63

fullScrnDraw, (1Y + apiFlg4)
plotLoc, (IY + plotFlags)

1 to use column 95 and row O

1 to draw to the display only

0 to draw to display and plotSScreen buffer
1 to draw to plotSScreen buffer only

bufferOnly, (IY + plotFlag3)
None

None
None
None
None

If the buffer is specified, then the contents of the buffer are used to draw the
point.

G-T and HORIZ split-screen modes affect how this routine maps the
coordinates specified. To avoid this, turn off the split-screen modes.

See ForceFullScreen .
Turn on the point specified by pixel coordinates at (5,10):
LD BC,5*256+10

B_CALL PointOn ; turn on the point

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

309

Regraph

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

Graphing and Drawing

Graphs any selected equations in the current graph mode along with any
selected statplots.

None

smartGraph_inv, (IY + smartFlags) = 1 to defeat smart regraphing feature
and force all equations to be

regraphed, not just new ones.

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen ,

not to the display.

Current graph equations
Current window settings

None
None

Graph redrawn to the display and backup buffer plotSScreen , or the
plotSScreen only.

All but AF

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. . To avoid this situation, turn off the split screen modes.
See the ForceFullScreen routine for further information. Also, see the Smart
Regraphing section.

B_CALL Regraph

TI-83 Plus Developer Guide

Initial Release October 29, 1999

310

Appendix A: System Routines — Graphing and Drawing

SetAllPlots

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Selects or deselects all statplots.

B = 0 to unselect

B =1 to select
None
None

None
None

If any plot's selection stat changes then the graph is marked dirty.

All

Turn off all stat plots.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

311

SetFuncM

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Changes from current graph mode to function mode.

None
None
None

None
None

Current flags saved with current mode, function mode flags and pointers set

up.
A, BC, DE, HL

B_CALL SetFuncM

TI-83 Plus Developer Guide

Initial Release October 29, 1999

312

Appendix A: System Routines — Graphing and Drawing

SetParM

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Changes from current graph mode to parametric mode.

None
None
None

None
None

Current flags saved with current mode. Parametric mode flags and pointer set

up.
A, BC, DE, HL

B_CALL SetParM

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

313

SetPolM

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:
Remarks:

Example:

Graphing and Drawing
Changes from current graph mode to polar mode.

None
None
None

None
None

Current flags saved with current mode, polar mode flags and pointers set up.

A, BC, DE, HL

B_CALL SetPolM

TI-83 Plus Developer Guide

Initial Release October 29, 1999

314

Appendix A: System Routines — Graphing and Drawing

SetSegM

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing
Changes from current graph mode to sequence mode.

None
None
None

None
None

Current flags saved with current mode, sequence mode flags and pointers set

up.
A, BC, DE, HL

B_CALL SetSegM

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 315

SetTblGraphDraw

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Sets the current graph to dirty to cause a complete regraph the next time the
graph needs to be displayed. Also marks the table of values as dirty, unless a
graph is currently being graphed.

None
None
None

None

smartGraph_inv, (IY + smartFlags) is set to invalidate smart graph
reTable, (IY + tbIFlags) is set to dirty the table, if not graphing
graphDraw, (IY + graphFlags) is set to dirty the graph

None
None

TI-83 Plus Developer Guide Initial Release October 29, 1999

316

Appendix A: System Routines — Graphing and Drawing

TanLnF

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

Draws the tangent line for given equation at a given point.

The equation itself is not drawn only the tangent line.

The graph screen is not displayed — it is assumed to be displayed already.

None
None

FPST = equation name, X is the independent variable
Variable X = X coordinate of point
OP1 =Y coordinate of point, a floating-point number

Window settings for the current graph are used

None

None

Tangent line drawn to the display.
Equation name removed from the FPS.
All

OP1 - OP6
See section on the Floating Point Stack in Chapter 2.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

317

UCLIneS

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Graphing and Drawing
Draws a WHITE line between two points specified by graph coordinates.

The line is plotted according to the current window settings Xmin, Xmax, Ymin,
Ymax.

The points do not need to lie within the current window settings. This routine
will clip the line to the screen edges if any portion of the line goes through the
current window settings.

This routine should only be used to draw lines in reference to the window
settings.

ILine can be used to draw lines by defining points with pixel coordinates,
which will be a faster draw.

FPS2 — Y1 Coordinate
FPS3 — X1 Coordinate
FPS1 — Y2 Coordinate
FPST — X2 Coordinate

plotLoc, (IY + plotFlags) 1 to draw to the display only
0 to draw to the display and the plotSScreen
buffer

1 to draw to the plotSScreen buffer only

bufferOnly, (IY + plotFlag3)

G-T and HORIZ split screen modes will affect how this routine maps the
coordinates specified. To avoid this, turn off the split screen modes. See the
ForceFullScreen routine.

grfSplit, (IY + sGrFlags)
vertSplit, (IY + sGrFlags)
grfSplitOverride, (1Y + sGrFlags)

1 if horizontal split mode set
1 if graph-table split mode set
1 to ignore split modes

None

None
None
None
All

OP1 - OP6

This routine does not copy the graph buffer to the screen or invoke a regraph if
needed. Use PDspGrph to make sure the graph in the screen is valid.

See the CLineS routine.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

318

Appendix A: System Routines — Graphing and Drawing

UnLineCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Graphing and Drawing
Displays the current graph screen and erases a line defined by two points.

These points are graph coordinates with respect to the current range settings.
They do not have to be points on the screen. If they are not on the screen, the
line will still be drawn if it passes through the screen with the current range
settings.

Same as the TI-83 Plus instruction Line(with the last argument = O for unline.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

Points (X1,Y1) (X2,Y2), all are floating-point numbers
FPST = Y2 COORDINATE
FPS1 = X2 COORDINATE
FPS2 = Y1 COORDINATE
FPS3 = X1 COORDINATE

See the Floating Point Stack section.

None
None

Current graph and line are drawn to the screen and the graph backup buffer,
plotSScreen .

Inputs are removed from the Floating Point Stack.
All

OP1 - OP6

Errors can be generated during the draw — see the Error Handlers section.
See UCLineS to draw lines without graphing. See the Floating Point Stack
section.

See LineCmd .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

319

VertCmd

Category:

Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

Displays the current graph screen and draws a vertical line at Y = OP1.
Same as TI-83 Plus instruction Vertical.

None
graphDraw, (IY + graphFlags) = 1 if current graph is dirty and needs to be
redrawn
= 0 if graph buffer is up to date and is copied to
the screen

bufferOnly, (IY + plotFlag3) = 1 if draw to the backup buffer plotSScreen , not
to the display

OP1 =Y value to draw the vertical line at

None
None

Current graph and the line are drawn to the screen and the graph backup
buffer, plotSScreen .

FPST = name of equation drawn, this must be cleaned by the calling routine.
All

OP1 - OP6

Draw a vertical line at Y = 3 on the graph screen.

B_CALL OP1Set3 ;OP1=3

B_CALL VertCmd ; draw the line

TI-83 Plus Developer Guide

Initial Release October 29, 1999

320

Appendix A: System Routines — Graphing and Drawing

VtoWHLDE

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window converts a pixel point to its corresponding X and Y
values, floating-point numbers.

The graph must be up to date for this routine to return correct values.

B = X pixel value, 0 — 94, 0 = left most pixel column
C =Y pixel value, 1 — 62, 1 = next to last row of pixels from bottom

None
None

None
None

OP1 = floating-point value representing X pixel coordinate
OP4 = floating-point value representing Y pixel coordinate

All

OP1, OP2, OP3, OP4
The bottom row of pixels is not used. Graph is up to date.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

321

Xftol

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window, converts a floating-point value to an X pixel
coordinate.

This is used by the graphing routines to plot points in the current graph.
The graph must be up to date for this routine to return correct values.

HL = pointer to floating-point number representing the X coordinate
None
None

ACC = X pixel value, 0 — 94, 0 = left most pixel column
None

None

All

OP1, OP2, OP3
The right most column is not used. Graph is up to date.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

322

Appendix A: System Routines — Graphing and Drawing

Xitof

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window converts an X pixel coordinate to the floating-point

value of X for that pixel.
The graph must be up to date for this routine to return correct values.

ACC = X pixel value, 0 — 94, 0 = left most pixel column
HL = pointer to location to return floating-point value

None
None

None
None

Floating-point value representing X pixel coordinate returned at input HL to
HL + 8.

All

OP1, OP2, OP3
The bottom row of pixels is not used. Graph is up to date.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

323

Yftol

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Graphing and Drawing

In the current graph window, converts a floating-point value to an Y pixel
coordinate.

This is used by the graphing routines to plot points in the current graph.
The graph must be up to date for this routine to return correct values.

HL = pointer to floating-point number representing the Y coordinate
None
None

ACC =Y pixel value, 1 — 62, 1 = next to last row of pixels from bottom
None

None

All

OP1, OP2, OP3
The bottom row of pixels is not used. Graph is up to date.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

324

Appendix A: System Routines — Graphing and Drawing

ZmDecml

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that (0,0) is in the center of the display and
AX and AY = 0.1. See the ZDecimal selection in the TI-83 Plus ZOOM menu.

None
None

Current window settings.

None
graphDraw, (IY + graphFlags) = 1, dirty the graph

Current window settings are moved to ZPrevious. New windows settings set to
X:-47t04.7,Y:-3.1t0 3.1

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

ZmFit

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that the minimum and maximum Y value

for all selected functions fit in the graph window.
The same ZoomFit under the ZOOM menu.

None
None

Current window settings

None
graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.

New windows settings set so that all selected functions Y values fit in the
display when regraphed.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

326

Appendix A: System Routines — Graphing and Drawing

Zmint

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings such that AX and AY = 1.0, given the
coordinates in the center of the screen. The coordinates of the center of the
screen are rounded to the closest integer before the window range is set. See
the Zinteger selection in the TI-83 Plus ZOOM menu.

None
None

OP1 = X coordinate of new center of the screen, floating-point number
OPS5 =Y coordinate of new center of the screen, floating-point number

Current window settings.

None

graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.
New windows settings set.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 327

ZmPrev

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings back to the settings before the last zoom
command was executed, if one was. See the ZPrevious selection in TI-83 Plus
ZOOM/MEMORY menu.

None
None
None

None

graphDraw, (IY + graphFlags) = 1, dirty the graph

If ZPrevious values exist they are copied to the current window settings.
All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide Initial Release October 29, 1999

328

Appendix A: System Routines — Graphing and Drawing

ZmSquare
Category: Graphing and Drawing
Description: Changes the window settings in either the X or Y direction such that AX = AY.
Doing this operation will make a circle drawn have the shape of a circle instead
of an ellipse. See the ZSquare selection in the TI-83 Plus ZOOM menu.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1, dirty the graph
Others: Current window settings are moved to ZPrevious.
New windows settings set.
Registers All
destroyed:
Remarks: The graph is marked dirty for redrawing, but the graph is not redrawn.
Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing 329

ZmStats

Category: Graphing and Drawing

Description: Changes the window settings such that all selected Statplots will be visible in
the graph window. See the ZoomStat in the TI-83 Plus ZOOM menu.

Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1, dirty the graph
Others: Current window settings are moved to ZPrevious.

New windows settings set.

Registers All

destroyed:

Remarks: The graph is marked dirty for redrawing, but the graph is not redrawn.
Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

330

Appendix A: System Routines — Graphing and Drawing

ZmTrig

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Changes the window settings to preset values that are appropriate for
trigonometrical function graphs. See the ZTrig selection in the TI1-83 Plus
ZOOM menu.

None
None

Current window settings

None
graphDraw, (IY + graphFlags) = 1, dirty the graph

Current window settings are moved to ZPrevious.
New windows settings set to X: -(47/24) x pi, Y: (47/24) * pi

If the current angle mode setting is radians, then those values are used. If the
current angle mode setting is degrees, then those values are converted from
radians to degrees.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Graphing and Drawing

331

Zmusr

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Graphing and Drawing

Recalls the window settings stored by the last ZoomSto command. See the
ZoomRcl selection in the TI-83 Plus ZOOM/MEMORY menu.

None
None
None

None

graphDraw, (IY + graphFlags) = 1, dirty the graph
Current window settings are moved to ZPrevious.
New windows settings set.

All

The graph is marked dirty for redrawing, but the graph is not redrawn.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

332

Appendix A: System Routines — Graphing and Drawing

ZooDefault
Category: Graphing and Drawing
Description: Changes the window settings back to the default settings of (-10,10) for both X
and Y ranges.
The same ZStandard under the ZOOM menu.
Inputs:
Registers: None
Flags: None
Others: Current window settings
Outputs:
Registers: None
Flags: graphDraw, (IY + graphFlags) = 1, dirty the graph
Others: New windows settings set to X: -10 to 10, Y: -10 to 10
Registers All
destroyed:
Remarks: The graph is marked dirty for redrawing, but the graph is not redrawn.
Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

A System Routines —
Interrupt

DIVHLBYLO ...t eee et s e et e st e s esees e ees s eeene. 334
DIVHLBYA ...ttt eee et e et e e ees s s et sees s een e, 335

TI-83 Plus Developer Guide Initial Release October 29, 1999

334

Appendix A: System Routines — Interrupt

DivHLBY10

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Interrupt

Divides HL by 10.

HL = dividend
None
None

HL = Int(HL/10)
A = mod(HL/10)

None
None
None

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Interrupt

335

DivHLBYA

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Interrupt

Divides HL by accumulator.

HL = dividend
A = divisor

None
None

HL = Int(HL/A)
A = mod(HL/A) (remainder)

None
None
None

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

A

System Routines —
10

APPGELCAICt e e e e e aaaaa 337
F Y o] o1 €= (4 o PSSP 338
ST o3 K1 = 339
ST o3 K11 =1 (=] N [340
ST oy Y Y (= 341
SENUABYLE ..ottt 342

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — 10

337

AppGetCalc

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

10

Executes the basic GetCalc command to retrieve a variable from another
TI-83 Plus or a TI-83.

OP1 = name of variable to attempt to retrieve
None
None

None
None

comFailed, (IY + getSendFIg) = 0 if variable received
comFailed, (IY + getSendFIg) = 1 if variable not received
Variable updated or created if received

All

Variables can be received from both an TI-83 Plus and a TI-83.

B_CALL AnsName ;: OP1 = Ans
: variable name
B_CALL AppGetCalc ; attempt to get
: Ans
BIT comFailed,(IY+getSendFlg) ; did it work?
JP NZ,GetFailed ; jump if no

TI-83 Plus Developer Guide

Initial Release October 29, 1999

338

Appendix A: System Routines — IO

AppGetChl

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

10

Executes the basic GetChl command to retrieve data from a CBL or CBR
device.

OP1 = name of variable to attempt to retrieve
None
None

None
None

comFailed, (IY + getSendFIg) = 0 if variable received
comFailed, (IY + getSendFIg) = 1 if variable not received
Variable updated or created if received

All
LD HL,L1name
RST rMov9ToOP1 ; OP1 = L1 variable
; name
B_CALL AppGetChl ; attempt to get
; data
BIT comFailed,(lY+getSendFlg) ; did it work?
JP NZ,GetFailed ; jump if no
Llname: DB RListObj,tvarLst,tL1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — 10

339

ReclstByte

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

10

Polls the link port for activity until either a byte is received, the [ON] key is
pressed, or an error occurred during communications. The cursor is turned on
for updates.

None
None
None

ACC = byte received if one
None

Error will be generated if communications fail.
An error is also generated if the [ON] key is pressed.

All

APD can occur while waiting for link activity. See Chapter 2 for Error Handlers
and Link Port. See entry points ReclstByteNC , RecAByte , and SendAByte .

See Chapter 2.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

340

Appendix A: System Routines — IO

ReclstByteNC

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

10

Polls the link port for activity until either a byte is received, the [ON] key is
pressed, or an error occurred during communications. The cursor is not turned
on for updates.

None
None
None

ACC = byte received if one
None

Error will be generated if communications fail. An error is also generated if the
[ON] key is pressed.

All

APD can occur while waiting for link activity. See Chapter 2 for Error Handlers
and Link Port. See entry points ReclstByte , RecAByte , and SendAByte .

See Chapter 2.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — IO 341

RecABytelO

Category: 10
Description: Attempts to read a byte of data over the link port.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: ACC = byte if successful
Flags: None
Others: None
Registers All
destroyed:
Remarks: If no link activity is detected within about 1.1 seconds, a system error is

generated. See entry points ReclstByte , ReclstByteNC , and SendAByte .
Example: See Chapter 2.

TI-83 Plus Developer Guide Initial Release October 29, 1999

342

Appendix A: System Routines — IO

SendAByte

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

10

Attempts to send a byte of data over the link port.

None
None
None

None
None
None
All

If no link activity is detected within about 1.1 seconds, a system error is
generated. See entry points ReclstByte , ReclstByteNC , and RecAByte .

See Chapter 2.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
A Keyboard

F Y 010 RS = (F] o R SSRPPPPPPTRN 344
CaNAIPNINS .. e a e e aaaa 345
GEC S ..ttt 346
(=3 1= RPN 349

TI-83 Plus Developer Guide Initial Release October 29, 1999

344

Appendix A: System Routines — Keyboard

ApdSetup

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Keyboard

Resets the Automatic Power Down timer.

None
None

None

(apdTimer)
None
None

HL

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Keyboard

345

CanAlphins

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Keyboard

Cancels alpha, alpha lock, and insert mode.

None
None
None

None

textinsMode (In textFlags) and shiftALock (In shiftFlags) cleared
shiftAlpha (In shiftFlags) and shiftLwrAlph (In shiftFlags) may also be cleared

depends on flag shiftKeepAlph (In shiftFlags)

None

None

B_CALL

CanAlphins

TI-83 Plus Developer Guide

Initial Release October 29, 1999

346

Appendix A: System Routines — Keyboard

GetCSC

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:

Registers:
Flags:
Others:

Registers
destroyed:

Keyboard

Gets and clears keyboard scan code. This routine should be used to read the
keyboard only when an app does not care about second keys or alpha keys or
pull down menus.

This routine only returns to the application which physical key on the keyboard
was last pressed.

None
None
None

This routine does not wait for a key press to return back to the app. Key
presses are detected in the interrupt handler, this routine returns that value. A
0 value is returned if no key has been pressed since the previous call to
GetCSC.

A = (kbdScanCode) value

None

(kbdScanCode) set to 0. kbdSCR flag reset.
AF, HL

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Keyboard 347

G etCSC (continued)

Remarks: No silent link activity will be detected if this routine is used to poll for keys.
Below are the scan code equates.

skDown equ 01lh skCos equ 1Eh
skLeft equ 02h skPrgm equ 1Fh
skRight equ 03h skStat equ 20h
skUp equ 04h skO equ 21h
skEnter equ 09h skl equ 22h
skAdd equ OAh sk4 equ 23h
skSub equ 0Bh sk7 equ 24h
skMul equ 0Ch skComma equ 25h
skDiv equ 0Dh skSin equ 26h
skPower equ OEh skMatrix equ 27h
skClear equ OFh skGraphvar equ 28h
skChs equ 11h skStore equ 2Ah
sk3 equ 12h skLn equ 2Bh
sk6 equ 13h skLog equ 2Ch
sk9 equ 14h skSquare equ 2Dh
skRParen equ 15h skRecip equ 2Eh
skTan equ 16h skMath equ 2Fh
skVars equ 17h skAlpha equ 30h
skDecPnt equ 19h skGraph equ 31h
sk2 equ 1Ah skTrace equ 32h
sk5 equ 1Bh skZoom equ 33h
sk8 equ 1Ch skWindow equ 34h
skLParen equ 1Dh skYEqu equ 35h

sk2nd equ 36h

skMode equ 37h

skDel equ 38h

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

348

Appendix A: System Routines — Keyboard

G etCSC (continued)

Example: Poll for the 2nd key.

..sleep:

El

HALT

B_CALL

JR

GetCSC
ksk2nd
NZ,..sleep

; enable interrupts

; the halt is optional, this
; will help save battery life.

; you can still use GetCSC at
; anytime without the halt.

; sleep in low power for a
; little

; check for a scan code
; 2nd key ?
; jump if no

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Keyboard 349

GetKey

Category: Keyboard

Description: Keyboard entry routine that will return second keys, alpha keys — both capital
and lower case, the on key, APD, and link communication. Contrast
adjustment is also handled by this routine.

When called, this routine scans for keys until one is pressed, or an APD
occurs, or the unit is turned off, or link activity is detected.

Inputs:
Registers: None

MUST BE RESET, otherwise no key presses
will be detected.
1 to show the run indicator while waiting for a

Flags: indicOnly, (1Y + indicFlags)

indicRun, (IY + indicFlags)

key press.
apdAble, (IY + apdFlags) = 1if APD is enabled
= 0if APD is disabled
lwrCaseActive, (IY + appLwrCaseFlag) = 1 for the key sequence
[alpha] [alpha] to access lower
case alpha key presses
= 0 for normal alpha key operation
Others: None
Outputs:
Registers: ACC = key code, 0 = ON key
See T183plus.inc file.
Flags: oninterrupt, (IY + onFlags) = 1 if ON key, this should be reset
Others: APD: If the auto power down occurs the application will not be notified. Once

the unit is turned back on control is returned to the GetKey routine.

OFF: If the unit is turned off the application is put away. When the unit is
turned back on the home screen will be in control.

Link Activity: When link activity is initiated, control is given to the silent link
handler. If the communication is from the GRAPH LINK, the
application will be shut down in most cases. The only exception is
getting screen snap shots, in that case the application is not shut
down. After the screen is sent control returns to GetKey.

Registers DE, HL
destroyed:
Remarks: If APD is disabled, it should be re-enabled before exiting the application. If

lower case is enabled, it should be disabled upon exiting the application.

Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

System Routines —
List

o | S PURRPUR 351
AAIMELIE.....c e e e a e 352
(70701 5 1 o PP 353
(7o) 814 I ol 1o I RPN 354
(7o) 817 I 1 o] I o RPN 355
DEILISTEL e 356
FINd_Parse FOrMUIAuuiiiiii e 357
(=3 1 10 1 |t PN 358
Lo IR oY= S 359
L EY= T 1 L PP 361
U I P 363

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — List 351

AdrLEle

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:

Remarks:

Example:

List
Computes the RAM address of an element of a list.

DE = pointer to start of list's data storage, output of FindSym

HL = element number in list to compute address of. List element number one
is checked for real or complex data type to determine if the list is real or
complex.

None
None

HL = pointer in RAM to the start of the desired element
None
None

This routine does not check to see if the element’s address requested is within
the current size of the list.

Do not use this routine on a list that does not have element number 1
initialized.

Compute the address of element number 23 of list L1.

LD HL,L1Name

RST rMov9ToOP1 ; OP1 =L1 name

B_CALL FindSym ; look it up

JP C,UndefinedL1 ; jump out if L1 is not
; defined;

LD AB ; if b<>0 then L1 is archived
; in Flash ROM

OR A

JP NZ,ArchivedL1 ; jump if not in RAM

; DE = pointer to start of list data storage;

LD HL,23d ; element's address desired
B_CALL AdrLEle ; RET HL = pointer to 23rd
; element
RET
DB ListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

352

Appendix A: System Routines — List

AdrMEle

Category:
Description:
Inputs:

Registers:

Flags:
Others:
Outputs:
Registers:
Flags:
Other:
Registers
destroyed:

Remarks:

Example:

List
Computes the RAM address of an element of a matrix.

DE = pointer to start of matrix’s data storage, output of FindSym

BC = element’s (row, column) to compute address of Matrix Element (1,1) is
checked for real or complex data type to determine if the matrix is real or
complex.

None
None

HL = pointer in RAM to start of desired element
None
None

This routine does not check to see if the element’s address requested is within
the current dimension of the matrix.
Do not use this routine on a matrix that does not have element (1,1) initialized.

Compute the address of element (5,6) of matrix [A].

LD HL,MatAName
RST rMov9ToOP1 ; OP1 =[A] name
B_CALL FindSym ; look it up
JP C,Undefined_A ; jump out if [A] is not
; defined;
LD AB ;ifb<>0then [A] is
; archived in Flash ROM
OR A
JP NZ,Archived_A ; jump if not in RAM,;
; DE = pointer to start of
; matrix data storage;
LD BC,5*256+6 ; element's address
; desired
B_CALL AdrMEle ; RET HL = pointer to
; element (5,6)
RET
MatAName:
DB MatObj,tvVarMat,tMatA,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List

353

ConvDim

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Converts floating-point value in OP1 to a two-byte hex value — make sure
valid matrix or vec dimension. Less than 100 is valid dimension

None
None
OP1 = FP number

A = LSB HEX VALUE, DE = ENTIRE HEX VALUE
None

None

A, BC, DE, HL, OP1

Error if negative, non-integer, or greater than 99.

B_CALL ConvDim

TI-83 Plus Developer Guide

Initial Release October 29, 1999

354

Appendix A: System Routines — List

ConvLcToLr

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Converts an existing complex list variable to a real list variable.

None
None
OP1 = name of complex list variable to convert

None
None

Error if the list was undefined.

OP1 = name of list with type set to ListObj. The imaginary part of each
element is deleted and the data storage area is compressed. All symbol
table pointers are updated.

All

Do not use this routine if the input list is already a real list.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List 355

ConvLrTolLc

Category: List
Description: Converts an existing real list variable to a complex list variable.
Inputs:

Registers: DE = pointer to data storage for list, output of ChkFindSym

Flags: None
Others: FPST = name of variable converted, see Floating Point Stack
Outputs:

Registers: DE = pointer to data storage of converted list

Flags: None

Others: Error if not enough free RAM to convert to complex.
Each element of the list is converted to a complex number with a 0 imaginary
part.

FPST = name of variable converted, see Floating Point Stack.
All symbol table pointers are updated.

Registers All
destroyed:
Remarks: Do not use this routine if the input list is already a complex list.
Example: Convert real list L1 to a complex list.
LD HL,L1Name
RST rMov9ToOP1 ; OP1 =L1 name
B_CALL PushRealO1 : FPST = name of list
B_CALL FindSym ; look it up, DE = pointer
; to data storage
JP C,convertError ; jump out if L1 is not
; defined
AppOnErr convertError ; install error handler in
; case not enough RAM
B_CALL ConvLrTolLc ; attempt to convert to
; complex
’ AppOffErr ; remove error handler,
: successful
’convertError:
B_CALL PopRealO1 ; remove name of list from
; FPST
RET
L1Name:
DB ListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

356

Appendix A: System Routines — List

DelListEl

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Deletes one or more elements from an existing list, residing in RAM.

A = ListObj if the list has real elements

= CListObj if the list has complex elements

DE = pointer to start of list's data storage, output of FindSym
HL = number of elements to delete

BC = element number to start deleting at

None
None

HL = pointer to start of list's data storage, output of FindSym
DE = new dimension of the list.

None

(insDelPtr) = pointer to start of the list

All

DO NOT ATTEMPT ON AN ARCHIVED LIST. The size bytes of the list are
adjusted. All pointers in the symbol table are updated

Delete three elements from list L1 starting with element number two.

LD
RST
B_CALL

JP

LD
LD
OR
JP

LD
AND
LD
LD

B_CALL

L1Name:
DB

HL,L1Name
rMov9ToOP1
FindSym

C,UndefinedL1

CA

AB

A
NZ,errArchived

AC
1Fh
HL,3
BC,2

DelListEl

; OP1 =L1 name
; look it up, DE = pointer
; to data storage
; jump out if L1 is not
; defined

; save type
; get archived status
; in RAM or archived

; cannot insert if archived

; get type back

; mask type of listin ACC
; want to delete 3 elements
; delete 2nd element on

; delete elements

ListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List

357

Find_Parse_Formula

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Checks if a list variable has a formula attached to it and parses the formula
and stores it back into the list data.

None
None
OP1 = name of list

None

None

If no error, then the list values are updated.
All

If no formula is attached, nothing is done to the existing list data.

Any error that occurs during the parsing of the formula will cause an error
screen to be displayed if no error handler is invoked.

If the resulting type from the formula parsing is not a list, this will also generate
an error.

See Error Handlers.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

358

Appendix A: System Routines — List

GetLToOP1

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Copies a list element to OP1 or OP1/OP2.

HL = element number to copy
DE = pointer to start of list's data storage

None
None

HL = pointer to next element in the list
None

OP1 = list element if a real list
OP1/0OP2 = list element if a complex list

All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List 359

IncLstSize
Category: List
Description: Increments the size of an existing list in RAM by adding one element at the
end of the list. No value is stored in the new element.
Input:
Registers: A = ListObj if the list has real elements
= CListODbj if the list has complex elements
DE = pointer to start of list's data storage, output of FindSym
Flags: None
Others: None
Output:
Registers: DE = intact
HL = new dimension of the list
Flags: None
Others: (insDelPtr) = pointer to start of the list
Registers All
destroyed:
Remarks: DO NOT ATTEMPT ON AN ARCHIVED LIST. A memory error will be

generated if insufficient RAM. The size bytes of the list are adjusted. All
pointers in the symbol table are updated.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

360

Appendix A: System Routines — List

IncLstSize (continued)

Example:

L1Name:

LD
RST
B_CALL
JP

LD

OR

JP

LD
B_CALL
PUSH
PUSH
B_CALL

POP
POP

B_CALL

DB

HL,L1Name
rMov9ToOP1
FindSym
C,UndefinedL1
AB

A
NZ,errArchived
A,ListObj
IncLstSize

DE

HL

OP1Set3

HL
DE

PutToL

Increment real list L1 and store a 3 in the new element.

; OP1 =L1 name
; look it up, DE = pointer to
; data storage
; jump out if L1 is not
; defined

; get archived status
;in RAM or archived
; cannot insert if archived
; type of listin ACC
; insert element at end
; save pointer to list
; save last element #, just

; inserted

;0OP1=3

; restore

; store OP1 to inserted
; element

ListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List

InsertList

Category:
Description:

Inputs:

Registers:

Flags:

Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

List

Inserts one or more elements into an existing list, residing in RAM.

A = ListObj if the list has real elements

A = CListODbj if the list has complex elements

DE = pointer to start of list's data storage, output of FindSym
HL = number of elements to insert

BC = List element number to insert after

CA =0 to set new elements to O
CA =1 to set new elements to 1

None

DE = intact
HL = new dimension of the list.

None
(insDelPtr) = pointer to start of the list
All

DO NOT ATTEMPT ON AN ARCHIVED LIST. A memory error will be
generated if insufficient RAM. The size bytes of the list are adjusted. All
pointers in the symbol table are updated

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

362

Appendix A: System Routines — List

InsertList

Example:

(continued)

elements to 0’s.

L1Name:

LD
RST
B_CALL

JP

LD
LD
OR
JP

LD
AND
LD
LD
OR

B_CALL

DB

HL,L1Name
rMov9ToOP1
FindSym

C,UndefinedL1

CA

AB

A
NZ,errArchived

AC
1Fh
HL,3
BC,2

A

InsertList

Insert three new elements in list L1 after its second element, set the new

:OP1=L1name
; look it up, DE = pointer to
; data storage
; jump out if L1 is not
; defined

; save type
; get archived status
;in RAM or archived
; cannot insert if archived

; get type back
; mask type of listin ACC
; want to insert 3 elements
; insert after 2nd element
; CA =0, to set new elements
:t0 0

; insert elements

ListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — List

363

PutToL

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

List

Stores either a floating-point number or a complex pair to an existing element
of a list.

HL = element number to store to
There is no check to see if this element is valid for the list.

DE = pointer to the start of the list's data area, output of FindSym
None

None

OP1 = floating-point number set to RealObj to store to a real list

OP1/0OP2 = floating-point numbers representing a complex number to store to
a complex list

There are no checks made that the correct data type is being stored to the
correct type of list (real/complex).

DE = pointer to next element in the list
None

OP1/OP2 = intact

All

; Look up L1 and store 1 to element 30.

LD HL,L1name
B_CALL Mov9ToOP1 ; OP1 = name
B_CALL FindSym ; look up
RET C ; return if undefined
; DE = pointer to data area of list

PUSH DE ; save pointer
B_CALL OP1Setl ;OP1=1
POP DE
LD HL,30d ; element to store to
B_CALL PutToL ; store 1 to element 30
RET

L1lname:
DB ListObj,tVarLst,tL1,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
Math

YA o 1] ©) @ 24 4 o TSP 368
ADSOLPADSOZ ———— 369
0 USPPP 370
A COSH L. 371
ACOSRAGeueiii it aaaaaaaa 372
Y T | = PSSP 373
S | o PSSP 374
ASINH e e e aaaaaaaan 375
F S]] = Lo [P 376
N = o PRSPPI 377
N 1= 1 PP 378
F N =1 174 8= (o [PPSR 379
ATANH L. et aaran 380
F N =] = (o [SSPPPPPPR 381
L L o 1 PSSR 382
L3 X o o PSS 383
LI PSS 384
CDIVBYREAI ...t 385
L0 (0) QPP 386
L - TSP 387
L1 1 (o | PR 388
L 74 | PP 389
(0470 Lo o PSP 390
(O 7(@] =1 K 0 PO 391
(1 7(0] =1 K O o]) PSP 392
CKOPLFPO ...ttt e e e e e e e et e e e eaaes 393
(1 7(@] =t 1 = 1 RS 394
CKOPLREAIeeiii ittt e e e e e e 395
CKOPZFPO ...t e e e e e e e e e eaaes 396
(017 (@] =2 = 1 TSR 397
(01 (@] =] = L= T | PRSP 398
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math 365

Contents (continued)

(07 01 1 | R 399
L0174V = 1 [T | 1N [o PSP 400
L 0 PO 401
[o o RSP 402
L4 I o TSR 403
CIrO P S . bbb 404
CMRBYREAI ... e e e e e e e e e araae 405
L3 PP PPPPPPP 406
(0] o] PSSR 407
COPLSEO ..o 408
L0 USRI 409
COSH 410
CPOPILOP2 ..ttt ettt e e e eeeees 411
CPOP AP 3 ..ttt ettt e e e aee e 412
(80 L= ol o PSP 413
(02T | {0 L0 SR 414
(020 | U= = PN 415
(351 U1 o PP PPPPPPPPPPR 416
L 1= 1 RPN 417
L I 01 oSN 418
G e e 419
L0914 {0 0 | PSPPSR 420
L (o) PP PPPPPPP 421
1T ol O B = o PRSPPI 422
DTOR et 423
ETOX et 424
(o T 1] = 425
= (o3 (0] - Y S 426
FPAGG e 427
FPDIV ettt 428
FPMUIL ... 429
o = o | TSP 430
] ST o [= T 431
FPSUD oo 432
e = (o 433
L | I 1T SR 434
L I 0T S 435
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

366 Appendix A: System Routines — Math

Contents (continued)

S TSPPN 436
(o | PRSP 437
INVO P LS e e e 438
INVOP LS C L. i e e e et e e e e e e e et e e et e eae 439
INVOP2S .o 440
LNV | o TS 441
00U EPPPR 442
0 o . GO 443
Y= PSPPSR 444
Y/ o PSPPSR 445
] T 1 446
(O] N q o) o] =T oI 447

OP1Set0, OP1Setl, OP1Set2, OP1Set3, OP1Set4, OP2SetO,
OP2Setl, OP2Set2, OP2Set3, OP2Set4, OP2Set5, OP2Set60,

OP3Set0, OP3Setl, OP3Set2, OP4Set0, OP4Setl, OP5Set0.........cccvvvvvenns 448
OP2SEEB... . 449
O P 2SBLA .. 450
PIUS L e e e e e e ——— 451
(0 S 452
e E= 1T | 453
L F= 18 (0] o SRR 454
RINBIMIE L e 455
0 [0 =T o U 456
] o PSPPI 457
0 11 Lo SRR 458
S e USSP 459
S e PSPPSR 460
] PSPPSR 461
SINCOSRA ...uvtiiii e e e e e e e e e e aaas 462
SINH e e 463
SINHCOSH. ... e e e e e e e aaeae 464
LT | {001 RPN 465
8= P SPPP 466
TANH e aaa 467
L= PRSPPI 468
THELANGIME....... i e e e e e e e e et e e e e e e aeeeesene 469
B I 4TSRS 470
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math 367

Contents (continued)

B I 4TS o £ TP 471
1)V F= 11 1 PP 472
LI > oSSR 473
I8 Lo PSPPSRI 474
Do =11 1 TP 475
D 010 I 2O 476
YN BT e et 477
D 2 0) PSSR 478
ZEIOLED ...t aaaa 479
= {01 @ | SRR 480
ZeroOP1, ZeroOP2, ZerOOP3 ...ttt eeenes 481

TI-83 Plus Developer Guide Initial Release October 29, 1999

368

Appendix A: System Routines — Math

AbsO102Cp
Category: Math
Description: Compares Abs(OP1) to Abs(OP2).
Inputs:
Registers: None
Flags: None
Others: OP1 = floating point
OP2 = floating point
Outputs:
Registers: None
Flags: Z = 1: Abs(OP1) = Abs(OP2)
Z =0, CA =1: Abs(OP1) < Abs(OP2)
Z =0, CA =0: Abs(OP1) > Abs(OP2)
Others: OP1 = Abs(OP1)
OP2 = Abs(OP2)
Registers A, BC, DE, HL
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 369

AbsO1PAbsO2

Category: Math

Description: Calculates the sum of the absolute values of the floating point in OP1 plus the
floating point in OP2.

Inputs:
Registers: None
Flags: None

Others: OP1 = floating point
OP2 = floating point

Outputs:
Registers: None
Flags: None
Others: OP1 = floating point with value (Abs(OP1) + Abs(OP2))
Registers A, BC, DE, HL
destroyed:
Remarks: None
Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

370

Appendix A: System Routines — Math

ACos

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse cosine of a floating point. The answer will not go

complex.

None
None
OP1 = floating point

None

None

OP1 = inverse cosine (floating point)
All

OP1, OP2, OP3, OP4, OP5

Domain error if answer is complex.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

371

ACosH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes inverse hyperbolic cosine of a floating point.

None
None
OP1 = floating point

None

None

OP1 = inverse hyperbolic cosine (floating point)
All

OP1, OP2, OP3, OP4, OP5
Domain error if OP1 is negative.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

372

Appendix A: System Routines — Math

ACosRad

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse cosine of a floating point and force radian mode.

None
None
OP1 = floating point

None

None

OP1 = inverse cosine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

373

Angle

Category:
Description:

Input:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Calculates a polar complex angle from a rectangular complex.

None
None

OP1 = real representing complex X
OP2 = real representing complex Y

None
None
OP1 = real representing complex angle
TBD

OP1 is not modified.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

374

Appendix A: System Routines — Math

ASIn

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse sine of a floating point.

None
None
OP1 = floating point

None

None

OP1 = inverse sine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 375

ASInH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Computes the inverse hyperbolic sine of a floating point.

None
None
OP1 = floating point

None

None

OP1 = inverse sine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide Initial Release October 29, 1999

376

Appendix A: System Routines — Math

ASIinRad

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse sine of a floating point and force radian mode.

None
None
OP1 = floating point

None

None

OP1 = inverse sine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

377

ATan

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse tangent of a floating point.

None
None
OP1 = floating point

None

None

OP1 = inverse tangent (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

378

Appendix A: System Routines — Math

ATan2

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns the angle portion of a complex number in rectangular form.

None

trigDeg, (IY + trigFlags) 1 to return angle in degrees

0 to return angle in radians

OP1 = imaginary part of complex number, floating-point number
OP2 = real part of complex number, floating-point number

None
None

OP1 = the angle portion of the polar form of the input rectangular complex
number.

All

OP1-0OP5

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math

379

ATan2Rad

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns the angle portion of a complex number in rectangular form — forced
to return the angle in radians no matter what the current system angle settings
are.

None
None

OP1 = imaginary part of complex number, floating-point number
OP2 = real part of complex number, floating-point number

None
None

OP1 = the angle portion of the polar form of the input rectangular complex
number.

All

OP1-0OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

380

Appendix A: System Routines — Math

ATanH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Math
Computes the inverse hyperbolic tangent of a floating point.

None
None
OP1 = floating point

None

None

OP1 = inverse hyperbolic tangent (floating point)
All

OP1, OP2, OP3, OP4, OP5

Initial input rules:

» If floating point = 0, then output = 0.

» If the absolute value of input is greater than 1 then domain error.
» FOR |OP1] <.7 Use Cordic; otherwise, use Logs.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

381

ATanRad

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the inverse tangent of a floating point and forces radian mode.

None
None
OP1 = floating point

None

None

OP1 = inverse tangent (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

382

Appendix A: System Routines — Math

CAbs

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the magnitude of a complex number.

None
None
OP1/0OP2 = complex number

None

None

OP1 = floating point result, a real number
All

OP1 — OP4
SQROOL(OP12 + OP2"2).
B _CALL CAbs

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

383

CAdd

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Addition of two complex numbers.

None
None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None
None

OP1/0OP2 = complex result (first argument) + (second Argument)

All

OP1-0P2

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

384

Appendix A: System Routines — Math

CDiv

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Division of two complex numbers.

None
None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None
None

OP1/0OP2 = complex result (first argument) / (second Argument)

All

OP1-0P4

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

385

CDivByReal

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Divides a complex number by a real number.

None
None

OP1/0OP2 = complex number
OP3 = floating point real number

None
None

OP1/0OP2 = complex result, OP1/OP2 / OP3
OP3 = intact

All

OP1 - OP4

B_CALL CDivByReal

TI-83 Plus Developer Guide

Initial Release October 29, 1999

386

Appendix A: System Routines — Math

CEtoX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns e*X where X is a complex number.

None
None
OP1/0OP2 = complex number

None

None
OP1/0OP2 = complex result
All

OP1 - OP6

B_CALL CEtoX

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

387

CFrac

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns the fractional part of both the real and imaginary components of a

complex number.

None
None

OP1/0OP2 = complex number

None
None

OP1/0OP2 = complex result

All

OP1, OP2

B_CALL CkFrac

TI-83 Plus Developer Guide

Initial Release October 29, 1999

388

Appendix A: System Routines — Math

Cintgr

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Math

Executes the Intgr function on a complex number.

None
None

OP1/0OP2 = complex number

None
None

OP1/0OP2 = complex result

All

OP1, OP2

Return the next integer less than or equal to, for both the real and imaginary

parts of the complex number.

See Intgr.
B_CALL Cintgr

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

389

Ckint

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests floating-point number to be an integer.

HL = pointer to the exponent of the number to check

None
None

Z = 1if integer, Z = 0 if noninteger

None
None
All

OP1-0OP5

If exponent of OP1 > 13 then it is considered to be an integer.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

390

Appendix A: System Routines — Math

CkOdd

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Math
Tests if a floating-point number is odd or even.

HL = pointer to exponent of number to check
None
None

None

If even, then Z = 1. If odd, then Z = 0.
None

All

None

If exponent of OP1 > 13, then it is considered to be an even.
If 0 < Abs(OP1) <1, then it is considered odd, negative exponent.

Test a floating-point number in OP1 for add/even.

LD HL,0P1+1
B_CALL CkOdd
JP Z,Is_Even

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

391

CkOP1CO

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Tests a complex number in OP1/OP2 to be (0,0).

None
None
OP1/0OP2 = complex number

None

If (0,0), then Z = 1; otherwise, Z = 0.
None

A

B_CALL CKOP1CO

TI-83 Plus Developer Guide

Initial Release October 29, 1999

392

Appendix A: System Routines — Math

CkOP1Cplx

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests value in OP1 for complex data type.

None
None

(OP1) = objects data type byte

None

If OP1 contains a complex number, then Z = 1; otherwise, Z = 0.

None
A

None

B_CALL

CKOP1Cplx

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

393

CkOP1FPO

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Tests floating-point number in OP1 to be 0.

None
None
OP1 = floating-point number

None

Z=1:0P1=0
Z=0:0P1<>0

None
A

None

B_CALL CkOP1FPO

TI-83 Plus Developer Guide

Initial Release October 29, 1999

394

Appendix A: System Routines — Math

CkOP1Pos

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Tests floating-point number in OP1 to be positive.

None
None
(OP1) = sign byte of floating-point number in OP1

ACC bit 7 = sign bit
If OP1 >0, Z =1, otherwise, Z = 0.

None
A

None

B_CALL CkOP1Pos

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 395

CkOP1Real

Category: Math
Description: Tests object in OP1 to be a real data type.
Inputs:

Registers: None
Flags: None
Others: (OP1) = objects data type byte

Outputs:
Registers: ACC = data type of object in OP1
Flags: If OP1 contains a real number, then Z = 1; otherwise, Z = 0.
Others: None

Registers A

destroyed:

RAM used: None

Remarks:

Example: B_CALL CkOP1Real

TI-83 Plus Developer Guide Initial Release October 29, 1999

396

Appendix A: System Routines — Math

CkOP2FPO

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests floating-point number in OP2 to be 0.

None
None
OP2 = floating-point number

None
If OP2 =0, then Z = 1; otherwise, Z = 0.

None
A

None

B_CALL CkOP2FPO

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

397

CkOP2Pos

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests floating-point number in OP2 to be positive.

None
None
(OP2) = sign byte of floating-point number in OP2

ACC bit 7 = sign bit
If OP2 > 0, then Z = 1; otherwise, Z = 0.

None
A

None

B_CALL CKOP2Pos

TI-83 Plus Developer Guide

Initial Release October 29, 1999

398

Appendix A: System Routines — Math

CkOP2Real

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Tests object in OP2 to be a real data type.

None
None

(OP1) = objects data type byte

ACC = data type of object in OP2

If OP2 contains a real number, then Z = 1; otherwise, Z = 0.

None
A

None

B_CALL

CkOP2Real

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 399

CkPoslint

Category: Math
Description: Tests floating-point number in OP1 to be a positive integer.
Inputs:

Registers: OP1 = floating-point number

Flags: None
Others: None
Outputs:
Registers: If OP1 is a positive integer, then Z = 1.
Flags: None
Others: None
Registers All
destroyed:
RAM used: None
Remarks:
Example: B_CALL CkPosInt ; check OP1 = positive integer

JR Z,Posint ; jump if positive integer

TI-83 Plus Developer Guide Initial Release October 29, 1999

400

Appendix A: System Routines — Math

CkValidNum

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math
Checks for a valid number for a real or complex number in OP1/OP2.

OP1, if real
OP1 and OP2, if complex

None
None

Err: Overflow if exponent > 100
Value set to 0 if exponent < -99

None
None
AF, HL

This should be used before storing a real or complex to a user variable or a
system variable.

Intermediate results from the math operations can generate values outside of
the valid exponent range for the TI1-83 Plus. This routine will catch those
cases.

If this is not done, then problems can occur when trying to display the invalid
numbers.

This does not need to be done after every floating-point operation. The core
math routines can handle exponents in the range or +/- 127.

After a floating-point multiply, check the result for validity before stringing to
variable X. Assume OP1 and OP2 have values already.

B_CALL FPMult ; generate value to store to 'X'
B_CALL CkValidNum ; make sure valid exponent
B_CALL StoX ; store to ‘X'

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

401

CLN

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the natural log of a complex number.

None
None
OP1/0OP2 = complex number

None

None
OP1/0OP2 = complex result
All

OP1 - OP6

B _CALL CLN

TI-83 Plus Developer Guide

Initial Release October 29, 1999

402

Appendix A: System Routines — Math

CLog

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the base 10 log of a complex number.

None
None
OP1/0OP2 = complex number

None

None
OP1/0OP2 = complex result
All

OP1 - OP6

B_CALL CLog

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

403

ClrLp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Clears a memory block (to 00h’s).

HL = address of start of memory block
B = number of bytes to clear

None
None

None
None
Memory block cleared
B, HL

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

404

Appendix A: System Routines — Math

CIrOP1S

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math
Clears the mantissa sign bit in OP1.

None
None
None

None
None
None

This routine only acts on the display, not the textShadow .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

405

CMItByReal

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Multiplies a complex number by a real number.

None
None

OP1/0OP2 = complex number
OP3 = floating point real number

None
None

OP1/0OP2 = complex result, OP1/OP2 * OP3
OP3 = intact

All

OP1 - OP4

B_CALL CMitByReal

TI-83 Plus Developer Guide

Initial Release October 29, 1999

406

Appendix A: System Routines — Math

CMult

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Multiplication of two complex numbers.

None
None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None
None

OP1/0OP2 = complex result (first argument) * (second argument)

All

OP1-0P4

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 407

Conj

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math
Computes the complex conjugate of a real complex number.

None
None
OP1/OP2 = real complex number

None
None

OP2 =-0P2, negate imaginary
Set OP1/OP2 = current complex mode

All

No error checking. Sets Ans to the current complex mode.

TI-83 Plus Developer Guide Initial Release October 29, 1999

408

Appendix A: System Routines — Math

COP1Set0

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Puts a complex (0,0) in OP1/0OP2.

None
None
None

None
None
OP1/0OP2 = complex (0,0)
A, HL

OP1 is not modified.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

409

Cos

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Computes the cosine of a floating point.

None
None

Current angle mode
OP1 = floating point

None

None

OP1 = cosine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

410

Appendix A: System Routines — Math

CosH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Computes the hyperbolic cosine of a floating point.

None
None
OP1 = floating point

None

None

OP1 = hyperbolic cosine (floating point)
All

OP1, OP2, OP3, OP4, OP5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

411

CpOP10OP?2

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Math
Compares floating-point values in OP1 and OP2.

None
None

OP1 = floating-point value
OP2 = floating-point value

None

Z=1:0P1=0P2
Z=0,CA=1:0P1<0P2
Z=0,CA=0:0P1>0P2

None
A, BC, DE, HL

OP1 and OP2 are preserved.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

412

Appendix A: System Routines — Math

CpOP40OP3

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Compares floating-point values in OP4 and OP3.

None
None

OP4 = floating-point value
OP3 = floating-point value

None

Z=1:0P4=0P3
Z=0,CA=1:0P4<0P3
Z=0,CA=0:0P4>=0P3

None
A, BC, DE, HL

OP1, OP2
OP4 and OP3 are preserved.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

413

CRecip

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the reciprocal of a complex number.

None
None
OP1/0OP2 = input complex number

None

None

OP1/0OP2 = resulting complex number
All

OP1 - OP4

B_CALL CRecip

TI-83 Plus Developer Guide

Initial Release October 29, 1999

414

Appendix A: System Routines — Math

CSgRoot

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the square root of a complex number.

None
None
OP1/0OP2 = complex number

None

None
OP1/0OP2 = complex result
All

OP1 - OP6

B_CALL CSqRoot

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

415

CSquare

Category: Math
Description: Computes the square of a complex number.
Inputs:

Registers: None
Flags: None
Others: OP1/0OP2 = complex number

Outputs:
Registers: None
Flags: None
Others: OP1/0OP2 = complex result
Registers All
destroyed:
RAM used: OP1-0P4
Remarks:
Example: B_CALL CSquare

TI-83 Plus Developer Guide

Initial Release October 29, 1999

416

Appendix A: System Routines — Math

CSub

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Subtracts two complex numbers.

None
None

OP1/0OP2 = second argument
FPS1/FPST = first argument

None

None

OP1/0OP2 = complex result (first argument) - (second argument)
All

OP1 - 0OP3

First argument is removed from the FPS (Floating Point Stack).

Assume that variable X and Y both have complex values.

Recall the contents and subtract Y from X, such that OP1/OP2 = X - Y
B_CALL

RclX ; OP1/OP2 = complex value of X

; This next call pushes OP1 the real part of the complex #, onto FPST;
; then pushes OP2, the imaginary part, onto the FPST which pushes the
; real part to FPS1 position.

; FPS1 = 1st argument real part
; FPST = 1st argument imaginary part

B_CALL PushMCpIxO1 ; push 1st argument on FPS, X
B_CALL RclY ; OP1/OP2 = complex value of Y
B_CALL CSub ; OP1/OP2 = result X -Y, FPS

; is cleaned

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

417

CTenX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns 10~X where X is a complex number.

None
None
OP1/0OP2 = complex number

None

None
OP1/0OP2 = complex result
All

OP1 - OP6

B_CALL CTenX

TI-83 Plus Developer Guide

Initial Release October 29, 1999

418

Appendix A: System Routines — Math

CTrunc

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns the integer part of both the real and imaginary components of a
complex number; no rounding is done.

None
None

OP1/0OP2 = complex number

None
None

OP1/0OP2 = complex result

No rounding is done; for example, Trunc (1.5 + 3i) returns 1 + 3i.

All
OP1, OP2
B_CALL CTrunc

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

419

Cube

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the cube of a floating-point number.

None
None

OP1 = floating-point number

None
None
OP1 =OP173
A, BC, DE, HL

OP1-0P3

B_CALL Cube

TI-83 Plus Developer Guide

Initial Release October 29, 1999

420

Appendix A: System Routines — Math

CXrootY

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers

destroyed:

RAM used:

Remarks:

Example:

Math

Returns the complex root of a complex number, y*(1/x).

None
None

OP1/0OP2 = second argument (y)
FPS1/FPST = first argument (X)

None
None

OP1/0OP2 = complex result second_argument”(1/(first_argument))

All

OP1 - OP6

First argument is removed from the FPS (Floating Point Stack).

See CSub.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

CYtoX

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Raises a complex number to a complex power, y”~x.

None
None

OP1/0OP2 = second argument (x)
FPS1/FPST = first argument (y)

None

None

OP1/0OP2 = complex result first_argument”(second_argument)
All

OP1 - OP6
First argument is removed from the FPS (Floating Point Stack).
See CSub.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

422

Appendix A: System Routines — Math

DecOl1EXxp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Decrements OP1 exponent.

None
None
OP1

None

None

Decrement OP1 exponent by one.
A

B_CALL DecOlExp

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

423

DToR

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Converts the floating-point number in OP1 from a degrees angle to a radian

angle.

None
None
OP1 = floating-point number to convert

None
None

OP1 = floating-point number representing the radian angle of the input value

All

OP1, OP2, OP3

TI-83 Plus Developer Guide

Initial Release October 29, 1999

424

Appendix A: System Routines — Math

EToX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Computes e”OP1 = 10MOP1xLOG(e)).

None
None
OP1 = value e is raised to

None

None

OP1 =result

All, OP2, OP3, OP4

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 425

ExpToHex

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Converts absolute value of one-byte.
Exponent (in HL) to hexadecimal.

(HL) = exponent to convert
None

None

(HL) = absolute value of exponent
None

None

A

This converts the floating point exponent value from the offset type
(e.g., 7Fh = 107-1, 80h = 10”0, 81h = 10”1,...) to a value of 0...n. It treats
positive and negative exponents the same:

e.g.,80h=0
8lh=1
82h =2
7Fh=-1
7TEh =-2
See OP1ExpToDec for another exponent conversion routine.
LD HL,Exponent
LD (HL),7Eh
B_CALL ExpToHex ; change (HL) from FEh ->02h.

TI-83 Plus Developer Guide Initial Release October 29, 1999

426

Appendix A: System Routines — Math

Factorial

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Computes the factorial of an integer or a multiple of .5.

None
None

OP1 = floating-point number, must be an integer or a multiple of .5 in the

range of -.5 to 69

None
None

OP1 = factorial of input, floating-point number. Else, error if input is out of

range.
All

OP1-0P3

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

427

FPAdd

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Floating point addition of OP1 and OP2.

None
None

OP1 = floating-point number, argument one
OP2 = floating-point number, argument two

None

None

OP1 = floating-point result OP1 + OP2
All

OP1, OP2

B_CALL FPAdd

TI-83 Plus Developer Guide

Initial Release October 29, 1999

428

Appendix A: System Routines — Math

FPDiv

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Floating point division of OP1 and OP2.

None
None

OP1 = floating-point number, argument one
OP2 = floating-point number, argument two

None
None

OP1 = floating point result OP1 / OP2
OP2 = intact

All

OP1, OP2, OP3

B_CALL FPDiv

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

429

FPMult

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Floating point multiplication of OP1 and OP2.

None
None

OP1 = floating-point number, argument one
OP2 = floating-point number, argument two

None
None

OP1 = floating point result OP1 * OP2
OP2 = intact

All

OP1, OP2, OP3

B_CALL FPMult

TI-83 Plus Developer Guide

Initial Release October 29, 1999

430

Appendix A: System Routines — Math

FPRecip

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Floating point reciprocal of OP1.

None
None
OP1 = floating-point number

None
None

OP1 = floating point result 1 / OP1
OP2 = input OP1

All

OP1, OP2, OP3

B_CALL FPRecip

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

431

FPSquare

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Floating point square of OP1.

None
None
OP1 = floating-point number

None
None

OP1 = floating-point result OP1 * OP1
OP2 = input OP1

All

OP1, OP2, OP3

B_CALL FPSquare

TI-83 Plus Developer Guide

Initial Release October 29, 1999

432

Appendix A: System Routines — Math

FPSub

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Floating point subtraction of OP1 and OP2.

None
None

OP1 = floating-point number, argument one
OP2 = floating-point number, argument two

None

None

OP1 = floating point result OP1 - OP2
All

OP1, OP2

B_CALL FPSub

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

433

Frac

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns the fractional part of a floating-point number.

None
None
OP1 = floating-point number

None

None

OP1 = floating-point result
All

OP1
No rounding; for example, Frac (1.5) = .5
B_CALL Frac

TI-83 Plus Developer Guide

Initial Release October 29, 1999

434

Appendix A: System Routines — Math

HLTimes9

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Math
Multiplies HL by nine.

HL = multiplicand
None
None

HL = HL * 9 module 65536

CA = 1: answer larger than 65535
CA = 0: answer less than 65535

None
BC

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 435

HTimesL

Category: Math
Description: Multiplies H (register) * L (register).
Inputs:

Registers: H, L

Flags: None
Others: None
Outputs:
Registers: HL = product of (original H) * (original L)
Flags: None
Others: None
Registers B, DE
destroyed:
Remarks: Restriction: H cannot be O; If H is 0, performs 256 * L.

Cannot overflow if H > 0.

Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

436

Appendix A: System Routines — Math

INt

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Rounds a floating-point number to an integer.

None
None

OP1 = floating-point number to round

None
None

OP1 = Int (OP1)

All

OP1

The mantissa sign of the input has no affect on the result.

B_CALL

Int

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

437

Intgr

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math
Returns the integer.

None
None
OP1 = floating-point number

None

None

OP1 = floating-point result
A, BC, DE, HL

If OP1 is an integer, then result = OP1. Otherwise,
for positive numbers, returns the same as Trunc (OP1);
for negative numbers, returns the Trunc (OP1 - 1).

TI-83 Plus Developer Guide

Initial Release October 29, 1999

438

Appendix A: System Routines — Math

InvOP1S

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Negates a floating-point number OP1, if OP1 = 0 then set OP1 = positive.

None

None

OP1 = floating-point number. No check is made for a valid floating-point

number.

None

None

OP1 =-(0OP1), unless 0 then it is set to positive.

A

SetOP1=-1
B_CALL OP1Setl ; OP1 = floating point 1
B_CALL InvOP1S ;OP1=-1

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math 439

InvOP1SC

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Used to negate a complex number in OP1/OP2 by negating both OP1 and
OP2. If OP1 or OP2 = 0, then that OP register is set positive.

None
None
OP1/0OP2 = two floating-point numbers that make up a complex number

None
None

OP1 =-(0OP1), unless 0 then it is set to positive
OP2 =-(0OP2), unless 0 then it is set to positive

A

TI-83 Plus Developer Guide Initial Release October 29, 1999

440

Appendix A: System Routines — Math

InvOP2S

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Negates a floating-point number OP2, if OP2 = 0 then set OP2 = positive.

None

None

OP2 = floating-point number, no check is made for a valid floating-point

number.

None

None

OP2 =-(0OP2), unless 0 then it is set to positive

A

SetOP2=-1
B_CALL OP2Setl ; OP2 = floating point 1
B_CALL InvOP2S ;OP2=-1

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math

441

InvSub

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Negates OP1 and add to OP2.

None
None

OP1 = floating point
OP2 = floating point

None

None

OP1 = floating point with value (-OP1) + OP2
A, BC, DE, HL

OP1, OP2
None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

442

Appendix A: System Routines — Math

LnX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Returns natural log of a floating-point number in OP1.

None
None
OP1 = floating-point number, must be positive

None
None

Error if OP1 is negative
Else OP1 = Ln(OP1)

All

OP1 - OP5
A system error can be generated. See section on Error Handlers.

Compute the Ln(OP1), install an error handler to avoid the system reporting
the error.

AppOnErr CatchError ; install error handler

B_CALL LnX ; compute Ln(OP1)

AppOffErr ; remove error handler, no
; error occurred

RET

; come here if LnX generated an error

CatchError:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

443

LogX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns log base 10 of a floating-point number in OP1.

None
None
OP1 = floating-point number, must be positive

None
None

Error if OP1 is negative
Else OP1 = Log(OP1)

All

OP1-0OP5

A system error can be generated. See section on Error Handlers.

See LnX.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

444

Appendix A: System Routines — Math

Max

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Returns the maximum (OP1, OP2), two floating-point numbers.

None
None

OP1 = floating-point number
OP2 = floating-point number

None

None

OP1 = maximum (OP1, OP2)
OP2 = intact

All

OP1-0P4

See CpOP10OP2, for non destructive compare.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

445

Min
Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Computes the minimum of two floating-point numbers.

None
None

OP1 = floating-point number argument one
OP2 = floating-point number argument two

None
None

OP1 = minimum (OP1, OP2)
OP2 = intact

OP3 = argument one

OP4 = argument two

A, BC, DE, HL

OP1 - OP4

TI-83 Plus Developer Guide

Initial Release October 29, 1999

446

Appendix A: System Routines — Math

Minusl

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Floating point subtraction of one from OP1.

None
None
OP1 = floating-point number

None

None

OP1 = floating-point result OP1 - 1
All

OP1, OP2

B_CALL Minusl

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 447

OP1lExpToDec

Category: Math
Description: Converts absolute value of exponent to a bcd number.
Inputs:

Registers: None

Flags: None
Others: OP1 + 1 = exponent to convert
Outputs:

Registers: (HL) = OP1 + 1 = |Exp| as hex
A = |Exp| as bcd

Flags: None
Others: OP1 + 1 = |Exp| as hex
Registers A, BC
destroyed:
Remarks: Overflow Error if |Exp| > 99
Example: ; Input OP1 + 1 value -> Output OP1 + 1 and A register
81h (1071) -> 01h & 01h
7Fh (10"-1) -> 01h & 01h
8Dh (10"13) -> 0Dh & 13h
73h (107-13) -> 0Dh & 13h

TI-83 Plus Developer Guide Initial Release October 29, 1999

448

Appendix A: System Routines — Math

OP1Set0, OP1Setl, OP1Set2, OP1Set3, OP1Set4,
OP2Set0, OP2Setl, OP2Set2, OP2Set3, OP2Set4,
OP2Set5, OP2Set60, OP3Set0, OP3Setl,
OP3Set2, OP4Set0, OP4Setl, OP5SetO

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math Utility

Sets value of OP(x) to floating point (value).

None
None
None

None
None
OP(x) = floating-point value
A, HL

Combinations Available:

Value 0 1 2 3 4
Register
OP1
OP2
OP3
OP4
OP5 X

B_CALL OP2Set5

X X X
X
X

X
X
X
X

X X X X

60

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

449

OP2Set8

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math
Sets OP2 = floating point 8.

None
None
None

None
None
OP2 = floating point 8
A, HL

TI-83 Plus Developer Guide

Initial Release October 29, 1999

450

Appendix A: System Routines — Math

OP2SetA

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Sets OP2 = floating-point value between 0 and 9.9.

ACC = two digits of mantissa to set OP2 to
None
OP2 set to floating-point value

None

None

None

A, HL

; SetOP2=17.6
LD A,76h ; mantissa digits
B_CALL OP2SetA ;OP2=7.6

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math

451

Plusl

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Floating point subtraction of one from OP1.

None
None
OP1 = floating-point number

None

None

OP1 = floating-point result OP1 - 1
All

OP1, OP2

B_CALL Plusl

TI-83 Plus Developer Guide

Initial Release October 29, 1999

452

Appendix A: System Routines — Math

PtoR

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Converts complex number in OP1/OP2 from a polar complex number to a
rectangular complex number.

None
None

OP1 = floating-point number radius part of complex number
OP2 = floating-point number angle part of complex number

None

None

OP1/0OP2 = rectangular representation of input polar complex number
All

OP1 - OP6

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math 453

RandInit

Category: Math
Description: Initializes random number seeds to default value.
Inputs:

Registers: None

Flags: None

Others: None
Outputs:

Registers: None

Flags: None

Others: None
Registers HL, DE, BC
destroyed:
Remarks: Seeds initialized.
Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

454

Appendix A: System Routines — Math

Random

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Returns a random floating-point number, O < number < 1.

None
None
None

None

None

OP1 = floating point random number
All

OP1 - 0OP3
See RnFx and Round routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

455

RName

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Constructs a name for real variable R in the format required by routine

FindSym .

None
None
None

None
None

OP1 = contains variable name for R in format required by routine FindSym

A, HL

This routine is used to prepare for a call to routine FindSym .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

456

Appendix A: System Routines — Math

RndGuard

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Rounds a floating-point number to 10 mantissa digits. The exponent value has
no effect on this routine.

None
None
OP1 = floating-point number to round to 10 mantissa digits

(fmtDigits) = current fix value

Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal
Digits to round to, 0 — 9

None

None

OP1 = input floating point rounded to 10 mantissas digits
All

OP1
See the RnFx and Round routines.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math

457

RnFx

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Rounds a floating-point number to the current FIX setting for the calculator.
This will round the digits following the decimal point.

None
None
OP1 = floating-point number to round

None
None
OP1 = input rounded to at maximum of 10 mantissa digits

(fmtDigits) = current fix value

Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal
Digits to round to, 0 — 9

All

OP1
See Round and RndGuard routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

458

Appendix A: System Routines — Math

Round

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Rounds a floating-point number to a specified number of decimal places. This
will round the digits following the decimal point.

D = number of decimal places to round to, 0 — 9
None
OP1 = floating-point number to round

(fmtDigits) = current fix value
Offh = floating, no rounding will be done
Otherwise, the value is the number of decimal digits to round to, 0 — 9

None

None

OP1 = input rounded to at maximum of 10 mantissa digits
All

OP1
See RnFx and RndGuard routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

459

RToD

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Converts the floating-point number in OP1 from a radian angle to a degree

angle.

None
None
OP1 = floating-point number to convert

None
None

OP1 = floating-point number representing the degree angle of the input value.

All

OP1, OP2, OP3
See DToR routine.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

460

Appendix A: System Routines — Math

RToP

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Converts complex number in OP1/OP2 from a rectangular complex number to
a polar complex number.

None
None

OP1 = floating-point number X part of complex number
OP2 = floating-point number Y part of complex number

None

None

OP1/OP2 = polar representation of input rectangular complex number
All

OP1 - OP6
See RToP routine.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Math

461

Sin
Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Computes the sine and cosine of a floating point.

Current angle mode
OP1 = floating point

None
None

None
None

OP1 = sine (floating point)
OP2 = cosine (floating point)

All

OP1, OP2, OP3, OP4, OP5

B_CALL Sin

TI-83 Plus Developer Guide

Initial Release October 29, 1999

462

Appendix A: System Routines — Math

SinCosRad

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Computes the sine and cosine of a floating point and radian mode is forced.

None
None
OP1 = floating point

None
None

OP1 = sine (floating point)
OP2 = cosine (floating point)

All

OP1, OP2, OP3, OP4, OP5

B_CALL SinCosRad

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

463

SinH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes hyperbolic sine of a floating point.

None
None
OP1 = floating point

None

None

OP1 = hyperbolic sine (floating point)
All

OP1, OP2, OP3, OP4, OP5

B_CALL SinH

TI-83 Plus Developer Guide

Initial Release October 29, 1999

464

Appendix A: System Routines — Math

SinHCosH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Computes the hyperbolic sine and cosine of a floating point.

None
None
OP1 = floating point

None
None

OP1 = hyperbolic sine (floating point)
OP2 = hyperbolic cosine (floating point)

All

OP1, OP2, OP3, OP4, OP5

B_CALL SinHCosH

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

465

SgRoot

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Returns the square root of OP1.

None
None
OP1 = floating-point number, must be positive

None

None

Error if OP1 is negative, else OP1 = Sqrt(OP1)
All

OP1 - 0OP3
See section on Error Handlers.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

466

Appendix A: System Routines — Math

Tan

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the tangent of a floating point.

None
None

Current angle mode
OP1 = floating point

None

None

OP1 = tangent (floating point)
All

OP1, OP2, OP3, OP4, OP5

B_CALL Tan

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

467

TanH

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math

Computes the hyperbolic tangent of a floating point.

None
None
OP1 = floating point

None

None

OP1 = hyperbolic tangent (floating point)
All

OP1, OP2, OP3, OP4, OP5

B_CALL TanH

TI-83 Plus Developer Guide

Initial Release October 29, 1999

468

Appendix A: System Routines — Math

TenX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Returns 10"(OP1).

None
None
OP1 = floating-point number

None

None

OP1 =10"OP1)
All

OP1 - OP4

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

469

Constructs a name for real variable Theta in the format required by routine

OP1 = contains variable name for Theta in format required by routine

This routine is used to prepare for a call to routine FindSym .

ThetaName
Category: Math
Description:
FindSym .
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others:
FindSym
Registers A, HL
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide

Initial Release October 29, 1999

470

Appendix A: System Routines — Math

Times2

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Calculates OP1 times two.

None
None
OP1 = floating point

None
None

OP1 = floating point with value OP1 * 2.0
OP2 = floating point 2

A, BC, DE, HL

OP1, OP2
None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

471

TimesPt5

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math
Calculates OP1 times 0.5.

None
None
OP1 = floating point

None
None

OP1 = floating point with value OP1 * 0.5
OP2 = floating point 0.5

A, BC, DE, HL

OP1, OP2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

472

Appendix A: System Routines — Math

TName

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Constructs a name for real variable T in the format required by routine

FindSym .

None
None
None

None
None

OP1 = contains variable name for T in format required by routine FindSym

A, HL

This routine is used to prepare for a call to routine FindSym .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

ToFrac

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Math

Converts a floating-point number to the integer numerator and integer
denominator of the equivalent fraction.

None
None
OP1 = floating-point number

None

Carry = 0: Success
= 1: Failure.

OP1:
On Failure — unchanged.
On Success — Numerator (floating-point integer)

OoP2:
On Failure — unchanged.
On Success — Denominator (floating-point integer)

All

Also modifies OP3, OP4, OP5, OP6.
Smallest possible denominator is created.
Fails if denominator must be > 999.

LD HL,ExampleNum

RST rMov9ToOP1
;OP1=1.25

B_CALL ToFrac

; Convert to fraction form
; Carry is now 0 (success)
: OP1 now contains: 00h 80h 50h 00h 00h 00h 00h 00h 00h =5

: OP2 now contains: 00h 80h 40h 00h 00h 00h 00h 0O0h 00h =4

LD HL,ExampleNum2
RST rMov9ToOP1

; OP1 =1.2345678901234
B_CALL ToFrac

; Convert to fraction form

; Carry is now 1 (failure)

; ExampleNum = 1.25

ExampleNum: DB 00h, 80h, 12h, 50h, 00h, 00h, 00h, 00h, 00h
; ExampleNum2 = 1.2345678901234

ExampleNum: DB 00h, 80h, 12h, 34h, 56h, 78h, 90h, 12h, 34h

TI-83 Plus Developer Guide

Initial Release October 29, 1999

474

Appendix A: System Routines — Math

Trunc

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Math

Truncates the fractional portion of a floating-point number returning the integer

portion with no rounding.

None
None

OP1 = floating-point number

None
None

OP1 = Trunc (OP1)

All

OP1-0P2

Trunc(1.5)=1

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

475

XName

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Constructs a name for real variable X in the format required by routine

FindSym .

None
None
None

None
None

OP1 = contains variable name for X in format required by routine FindSym

A, HL

This routine is used to prepare for a call to routine FindSym .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

476

Appendix A: System Routines — Math

XRootY

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Inverses power function and returns OP1(1/0OP2).

None
None

OP1 = number to find root of, floating point
OP2 = root to find, floating point

None

None

OP1 = result if no error, floating point
All

OP1 - OP6

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

arv

YName

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Constructs a name for real variable Y in the format required by routine

FindSym .

None
None
None

None
None

OP1 = contains variable name for Y in format required by routine FindSym

A, HL

This routine is used to prepare for a call to routine FindSym .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

478

Appendix A: System Routines — Math

YToX

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
RAM used:
Remarks:

Example:

Math
Power function, returns OP1"OP2.

None
None

OP1 = number to raise to a power, floating point
OP2 = power, floating point

None

None

OP1 = result if no error, floating point
All

OP1 - OP6

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math

479

ZeroleD

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math
Sets eight-byte memory block to all 00h'’s.

HL = start of target block in memory
None
None

None
None
Memory block starting at original HL is all 00h’s
A, HL

TI-83 Plus Developer Guide

Initial Release October 29, 1999

480

Appendix A: System Routines — Math

ZeroOP

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Math

Sets 11 bytes in OP(x) to 00h.
Note that this does not set the value to floating point 0.0.

HL = pointer to OP(x), x = 1...6
None
None

None

None

OP(x) = all 11 bytes 00h
A (=0), HL

; Set OP2 contents to all 00h:
; OP2+0 OP2+1 OP2+3 OP2+4 OP2+5 OP2+6 OP2+7 OP2+8 OP2+9 OP2+10
;00h 00h 00h 00Oh 00Oh 00Oh 00h 00h 00h 00h

LD HL,0P2

B_CALL ZeroOP

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Math 481

ZeroOP1, ZeroOP2, ZeroOP3

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Math

Sets 11 bytes in OP(x) to 00h.
Note that this does not set the value to floating point 0.0.

None
None
None

None

None

OP(x) = all 11 bytes 00h
A(=0), HL

Combinations Available:
=123

; Set OP2 contents to all 00h:
; OP2+0 OP2+1 OP2+3 OP2+4 OP2+5 OP2+6 OP2+7 OP2+8 OP2+9 OP2+10
;00h 00h 00h 00h 00Oh 00Oh 00h 00h 00h 00h

B_CALL ZeroOP2

TI-83 Plus Developer Guide Initial Release October 29, 1999

System Routines —
A Matrix

F A0 [\ 240)Y PP 483
(T 1Y 01O 1 = TR 484
[0 1017/ = 485

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Matrix

483

AdrMRow

Category:
Description:

Input:

Registers:

Flags:
Others:
Output:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Matrix
Computes the RAM address of the start of a row of a matrix.

DE = pointer to start of matrix's data storage, output of FindSym
B = row to compute address of

Matrix Element (1,1) is checked for real or complex data type to determine if
the matrix is real or complex.

Do not use this routine on a matrix that does not have element (1,1) initialized.
None
None

HL = pointer in RAM to start of desired element
None
None

This routine does not check to see if the row address requested is within the
current dimension of the matrix. See AdrMEle routine.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

484 Appendix A: System Routines — Matrix

GetMToOP1

Category: Matrix
Description: Copies an element from a matrix to OP1.
Input:

Registers: BC = element to get, row,col
DE = pointer to start of matrix's data storage

Flags: None
Others: None
Output:
Registers: HL = pointer to next element in the same row, or the start of the next row of
the matrix.
Flags: None
Other: OP1 = matrix element, floating-point number
Registers All
destroyed:
Remarks:
Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Matrix

485

PutToMat

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Matrix

Stores a floating-point number to an existing element of a matrix.

BC = (row, column) to store to
There is no check to see if this element is valid for the matrix.

DE = pointer to the start of the matrix’s data area, output of FindSym
None

None
OP1 = floating-point number

DE = pointer to next element in the matrix. This will be the next element in the
same row or the start of the next row.

None
OP1 = intact
All

Look up MatA and store 1 to element (5,7).

LD HL,MatAname

B_CALL Mov9ToOP1 ; OP1 = name

B_CALL FindSym ; look up

RET C ; return if undefined
; DE = pointer to data area of
; matrix

PUSH DE ; save pointer

B_CALL OP1Setl ;OP1=1

POP DE

LD BC,5*257+7 ; element to store to (5,7)

B_CALL PutToMat ; store 1 to element (5,7)

RET

MatAname:
DB MatObj,tVarMat,tMatA,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
Memory

N (o U = U o UPPPRR 488
L0 017 00 153 Y/ 1. S SUUPPPR 489
(O 1T TV | SRR 491
(04 [0 TST =T o {0 T PSS 492
(01101015377 14 1 TSP 493
(01 £=T= 110] o | U PR 494
LOF Lo To A=Y Y o] 6 LY T PP 495
(O (T | (=T O I USRS 496
(O (T 1 (=101 o] b PSSP 497
CrEAEEQU c.vee e e 498
CrEALEPAINviie e 499
(O 1= 1 (=] o SR 500
(01 £=T= 1] o (0T PPN 501
01 1o To 1] o (0] 8 o (o o [PPSR 502
CrEALEREAIeeei e 503
CrEALERLIST ..ttt 504
CreatERIMaAL.........uui e aae 505
(01 1=T= 115 1 Lo PPN 506
D 1= 1S .= P 507
DAtASIZEA ... e ————— 508
DeallOCFPS ...t 509
DEAlIOCFP S e 510
1= 11 =T o o S 511
DEIVAT ..t ——————— 513
= A £ 1 A o 514
1= LY T N L0 AN o 515
0 11 o o TP 516
[ToTUTe] 1] = o IS 517
EXCRNO e 518
T o P 519
L TaT0 VAN o] g =1 o P 520
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory 487

Contents (continued)

L TaT0 VAN o] a = LU o U 522
LT AN o o PR 524
FINAAPPNUMPAGES ...ttt e e e e e e e s 525
T aT0 VAN o] o] 5 o OSSP 526
LT VAN o] o161 o P 527
10 1S3 o IS 528
D 1T 2] 01 o | SRR 530
FIASNTORAM ...ttt 531
INSEITMEBIM . ettt e e e e e e e abae s 532
o T=To [0] T 1 == To =T o R 534
[IoT=To 1] =Yg To | == To T=To P 535
MEMCHK .. 536
PaAgEUGEL ... e a e ——— 537
RCIGDB2 ...ttt 538
RCIN o 539
RCIVAISYIM ... e e e e e e e s 540
RCIX e 541
RCLY e 542
REAIMIMAL ...ttt 543
SEtUPPAGEAPLI ... e —————————— 544
SrchVLStDN, SIChVLSIUD ..o 545
SEIMALE L. ...ttt ettt ettt e e e e e e e e e 546
SEO NS . e e et e a e 547
STOGDIB2 ...ttt bttt e nn e e e e e 548
1 (0] PP PPPPPPP 549
I (0@ 1 = PSPPSR 550
S (0 PP PPPPPPP 552
Y (015 VST ¢ SR 553
5] 0 PP 554
Y (o I 1= - PP 555
S (0) PP PP 556
] (0 2P PP 557

TI-83 Plus Developer Guide Initial Release October 29, 1999

488

Appendix A: System Routines — Memory

Swaps a variable between RAM and archive.

Symbol table and data area (RAM and Flash) modified.

Will unarchive a variable already archived and will archive a variable that is

Gives an Err: Variable for any name that is not archivable or unarchivable
(e.g., Groups cannot be unarchived and X cannot be archived).
Gives an Err: Undefined for any name that does not already exist.

Does memory checking to make sure there is enough space (in RAM or in
Archive) to store the variable. Generates a memory error if not.

Arc_Unarc
Category: Memory
Description:
Inputs:
Registers: None
Flags: None
Others: OP1 contains variable name
Outputs:
Registers: None
Flags: None
Others:
Registers All
destroyed:
Remarks: Destroys OP3 as well.
currently unarchived.
Example:

B_CALL
LD

RST

JR
CALL
JR

B_CALL
NzlfArchived:
LD

OR
RET

ZeroOP1
(OP1+1)tA

rFindSym
C,..skip
NzlIfArchived

Z,..skip

Arc_Unarc

AB

A

; unarchive variable A (real
; or complex) if it is
; archived:
; set OP1 to all Os
; want to look for floating
; point number named 'A'
; Data pointer -> DE
; System pointer -> HL
; Cif none

; does not exist, so skip
; NZ if was in RAM already.
; not archived, so no need to

; unarchive
; unarchive variable.

; B has page information, NZ
; if archived.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory 489

ChkFIindSym

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Memory
Searches the symbol table structure for a variable.

This particular search routine must be used if the variable to search for is
either a Program, AppVar, or Group. It will also work for variables of other
types as long as the data type in OP1 input is correct.

This is used to determine if a variable is created and also to return pointers to
both its symbol table entry and data storage area.

This will also indicate whether or not the variable is located in RAM or has
been archived in Flash ROM.

(OP1) = one-byte, data type of variable to search for.
This routine will fail if this data type is not correct.
(OP1 + 1) to (OP1 + 8) = variable name

None
None

CA flag = 1 if symbol was not found
= 0 if symbol was found

Also if found:

ACC lower 5 bits = data type

ACC upper 3 bits = system flags about variable, do an 1Fh to get type only

B = 0 if variable is located in RAM else variable is archived

B = ROM page located on
If variable is archived then its data cannot be accessed directly, it must be
unarchived first.

HL = pointer to the start of the variables symbol table entry

DE = pointer to the start of the variables data area if in RAM

None
OP1 = variable name
All

This will not find system variables that are preallocated in system RAM such
as Xmin, Xmax etc. Use RcISysTok to retrieve their values.

Note: ChkFindSym will not find Applications.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

490

Appendix A: System Routines — Memory

ChkFind Sym (continued)

Example: Look for AppVar MYAPPVAR in the symbol table.
If it exists and is archived then unarchive it and relook it up.

If it does not exist ; create it with a size of 100 ; bytes.

Relook:
LD
B_CALL
B_CALL
JR

LD
B_CALL

PUSH

PUSH

B_CALL

POP

POP

JR
VarCreated:

LD

OR

JR

B_CALL

RET
VarName:
DB

HL,varname
Mov9ToOP1
ChkFindSym
NC,varCreated

HL,100
CreateAppVar

HL
DE
OP4ToOP1
DE
HL
done

AB

A
Z,done
Arc_Unarc
relook

; OP1 = variable name
; look up
; jump if it exists

; size to create at
; create it, HL = pointer to
; sym entry, DE = pointer to
; data

; save during move
; OP1 = name
; restore

; check for archived
;in RAM ?
;1 yes
; unarchive if enough RAM
; look up pointers again in
; RAM now done:

AppVarObj, MYAPPVAR',0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

491

CleanAll

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Deletes all temporary variables from RAM.

None
None
None

None

None

Temporary variables are all deleted
All

This routine should only be used when there are no temporary variables that
exist and are still being used. See the Temporary Variables section in
Chapter 2 for further information. See the Parselnp and MemChk routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

492

Appendix A: System Routines — Memory

CloseProg

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

This routine is used after EditProg to return unused RAM back to free RAM.
The size bytes of the variable are updated by this routine. An application
should not update them.

Each of these are two-bytes:

(iMathPtrl) = pointer to the start of the variables data storage area
(iMathPtr2) = pointer to the byte following the variable data, this will be used
to calculate the new size of the variable
(iMathPtr3) = pointer to the byte AFTER the last byte of free RAM inserted
(iMathPtr4) = size of RAM block moved to allow the RAM to be inserted
DO NOT CHANGE THIS VALUE.
None
None
None
None

The variable’s size is changed. Unused RAM returned to free RAM. Normal
allocating and deallocating of RAM can resume.

All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

493

CmpSyms

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Compares Name @HL with Name @DE.

HL = end of first name in RAM
DE = end of second name in RAM
B = length of name

None
None

C = number of letters that match
C = original B if all letters match

Carry set if Sym2 (HL) > Sym1 (DE)
None
AF, BC, DE, HL

The names must be the same size. The name lengths should have already

been compared before calling this routine.

: See if the name last used for the Xlist variable in statistics is

: the name "ZEBRA"

LD HL,StZebra
RST rMov9ToOP1
LD DE,OP1+4
LD HL,StatX+4
LD B,5
B_CALL CmpSyms
LD AC

CP 5

JR Z,Match

JR NoMatch
StZebra DB "ZEBRA"

; Move 9 bytes to OP1:
; "ZEBRA" + junk

; compare 5 bytes
: If C = 5 then OP1 = StatX

TI-83 Plus Developer Guide

Initial Release October 29, 1999

494

Appendix A: System Routines — Memory

CreateOEqu

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates an equation variable of size 0 in RAM.

None
None
OP1 = name of equation to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.

Create an empty Y1 equation.

LD HL,Y1lname

RST rMov9ToOP1 ; OP1 =name

B_CALL CreateOEqu ; if returns then variable created
Ylname: DB EquObj,tvarEqu,tY1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

495

CreateAppVar

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates an AppVar variable in RAM.

HL = size of AppVar to create in bytes
None
OP1 = name of AppVar to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. Users can only delete
and link AppVars. They are intended for Apps to use for state saving upon
exiting. See section on Creating Variables.

Create AppVar DOG, 50 bytes in size.

LD HL,DOGname
RST rMov9ToOP1 ; OP1 = name
LD HL,50
B_CALL CreateAppVar ; if returns then variable
; created
DOGname: DB AppVarObj,'DOG',0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

496

Appendix A: System Routines — Memory

CreateCList

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates a complex list variable in RAM.

HL = number of elements in the list
None
OP1 = name of list to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Create complex list L1 with 50 elements.

LD HL,L1name
RST rMov9ToOP1 ; OP1 = name
LD HL,50
B_CALL CreateCList ; if returns then variable
; created
Llname: DB CListObj,tVarLst,tL1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

497

CreateCplx

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Creates a complex variable in RAM.

None
None

OP1 = name of complex to create

HL = pointer to variable’s symbol table entry

DE = pointer to variable’s data storage

None

OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. This should not be used to create temp storage space,
A-Z * theta. No initialization is done, assume random. See section on Creating

Variables.

Create complex A.

Aname:

HL,Aname
rMov9ToOP1

CreateCplx

CplxObj,'A',0,0

; OP1 = name

; if returns then variable
; created

TI-83 Plus Developer Guide

Initial Release October 29, 1999

498

Appendix A: System Routines — Memory

CreateEqu

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates an equation variable in RAM.

HL = size of equation to create in bytes
None
OP1 = name of equation to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.

Create Y1 equation 50 bytes in size.

LD HL,Y1lname

RST rMov9ToOP1 ; OP1 =name

LD HL,50

B_CALL CreateEqu ; if returns then variable created
Ylname: DB EquObj,tvarEqu,tY1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory 499

CreatePailr
Category: Memory
Description: Creates a pair of parametric graph equations.

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers

destroyed:

Remarks:

Example:

There should never be a situation where only 1 of a pair of parametric
equations is created without the other. This routine will check that there is
enough memory to create both equations before creating any.

HL = size to create the equation specified in OP1, either xt or yt. The member
of the pair not specified will be created empty.

None
OP1 = pair member name to create with the specified size

HL = size of pair member specified
None

OP1 = pair member name specified
OP4 = pair member name not specified

OP1 and OP2

Memory error if not enough free RAM to create the pair.

If xt# is specified then yt# is created empty. If yt# is specified then xt# is
created empty.

No checks are made for duplicate or valid names. No initialization is done,
assume random. See section on Creating Variables.

Create parametric pair of equations xt1 and yt1, ytl at size 50.

LD HL,ytlname
RST rMov9ToOP1 ; OP1 =name
LD HL,50
B_CALL CreatePair ; if returns then variables
; created
; OP1 =yt1, OP4 = xt1, HL = 50
ytlname: DB EquObj,tvVarEqu,tyt1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

500

Appendix A: System Routines — Memory

CreatePict
Category: Memory
Description: Creates a picture variable in RAM.
Inputs:
Registers: None
Flags: None
Others: OP1 = name of picture to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. The size of a Pic var is 756 bytes, it does not allocate space for
the last row of pixels, that row is never used by the system graph routines.
If you need to save a bitmap of the entire display to a variable then an AppVar
should be used. The only drawback to using an AppVar is that the Pic could
not be displayed by the user when the app is not executing.
No initialization is done, assume random. See section on Creating Variables.
Example: Create Pic Picl.

LD HL,Piclname
RST rMov9ToOP1 ; OP1 = name
B_CALL CreatePict ; if returns then variable
; created
Piclname: DB PictObj,tvarPict,tPic1,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

501

CreateProg
Category: Memory
Description: Creates a program variable in RAM.
Inputs:
Registers: HL = size of program to create in bytes
Flags: None
Others: OP1 = name of program to create
Outputs:
Registers: HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes
Flags: None
Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks: Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. See section on
Creating Variables.
Example: Create Program DOG, 50 bytes in size.

LD HL,DOGname
RST rMov9ToOP1 ; OP1 = name
LD HL,50
B_CALL CreateProg ; if returns then
; variable created
DOGname: DB ProgObj,'DOG',0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

502

Appendix A: System Routines — Memory

CreateProtProg

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates a protected program variable in RAM.

HL = size of program to create in bytes
None
OP1 = name of program to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization is done, assume random. Users cannot delete or
edit protected programs, they can be deleted from an application. See section

on Creating Variables.
Create protected Program DOG, 50 bytes in size.

LD HL,DOGname
RST rMov9ToOP1
LD HL,50
B_CALL CreateProtProg
; Created
DOGname: DB ProtProgObj,'DOG',0

; OP1 = name

; if returns then variable

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

503

CreateReal
Category: Memory
Description:
Inputs:

Registers: None

Flags: None

Others:
Outputs:

Registers:

Flags: None

Others: OP4 = variable’s name
Registers OP1 and OP2
destroyed:
Remarks:

Variables.

Example: Create real A.

Creates a real variable in RAM.

OP1 = name of real to create

HL = pointer to variable’s symbol table entry

DE = pointer to variable’s data storage

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. This should not be used to create temp storage space, only
A-Z x theta. No initialization is done, assume random. See section on Creating

Aname:

HL,Aname
rMov9ToOP1

CreateReal

RealObj,’A’,0,0

; OP1 = name

; if returns then variable
; created

TI-83 Plus Developer Guide

Initial Release October 29, 1999

504

Appendix A: System Routines — Memory

CreateRList

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates a real list variable in RAM.

HL = number of elements in the list
None
OP1 = name of list to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Create real list CAT with 50 elements.

LD HL,CATname
RST rMov9ToOP1 ; OP1 = name
LD HL,50
B_CALL CreateRList ; if returns then variable
; Created
CATname: DB RListObj,tVarLst,’CAT’,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

505

CreateRMat

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates a real matrix variable in RAM.

HL = dimension of matrix, (row,col), 99 is maximum row or column
None
OP1 = name of matrix to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, dimension

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the elements is done, assume random. See
section on Creating Variables.

Create matrix [A] with 5 rows and 8 columns.

LD HL,MatAname

RST rMov9ToOP1 ; OP1 = name

LD HL,5*256+8 ;5x8

B_CALL CreateRMat ; if returns then variable
; Created

MatAname: DB MatObj,tvVarMat,tMatA,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

506

Appendix A: System Routines — Memory

CreateStrng

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Creates a string variable in RAM.

HL = number bytes in string
None
OP1 = name of string to create

HL = pointer to variable’s symbol table entry
DE = pointer to variable’s data storage, size bytes

None
OP4 = variable’s name
OP1 and OP2

Memory error if not enough free RAM. No checks are made for duplicate or
valid names. No initialization of the string contents is done, assume random.
See section on Creating Variables.

Create string Strl 100 bytes in length.

LD HL,Strlname
RST rMov9ToOP1 ; OP1 = name
LD HL,100 ; size of string
B_CALL CreateStrng ; if returns then variable
; created
Strlname: DB StrngObj,tVarStrng,tStr1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

DataSize

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Computes the size, in bytes, of the data portion of a variable in RAM.

ACC = data type
HL = pointer to first byte of data storage

None
None

DE = size of data storage in bytes
HL = intact

None
None
A, BC

This routine cannot be used on archived variables or applications.

If the variable’s data area has size information, like a list has two-bytes for
number of elements, then those bytes are included in the computation.

; Find the size in bytes of the data area for list L1.

L1Name:
DB ListObj,tvVarLst,tL1,0,0
LD HL,L1name
RST rMov9ToOP1 ;OP1=1L1
B_CALL FindSym ; find in symbol table,

; DE = pointer to data

AND 1Fh ; ACC = data type information,
; real or complex list

EX DE,HL ; HL = pointer to data storage

B_CALL DataSize ; DE = size of data storage

: If L1 were areal list with 5

: elements then the size

; returned would be 47 bytes.
; 5 elements *9 for each = 45
; 2 size bytes =2

; 47

TI-83 Plus Developer Guide

Initial Release October 29, 1999

508

Appendix A: System Routines — Memory

DataSizeA

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Computes the size, in bytes, of the data portion of a variable that has two size
bytes as part of its data storage.
This application applies to equations, lists, matrices, programs, AppVars.

ACC = data type
BC = two byte size information: dimension, number of bytes, number of
elements

None
None

DE = size of data storage in bytes
None

None

All

If the variable’s data area has size information, like a list has two bytes for
number of elements, then those bytes are included in the computation.

; Find the size in bytes of a complex list with 5 elements:

LF A,CListObj ; ACC = data type information,
; cplx list

LD BC,5 ; number elements

B_CALL DataSizeA ; DE = size of data storage

5 elements *18 for each = 90
2 size bytes =2

92

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

509

DeallocFPS

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Removes space in nine-byte chunks from the Floating Point Stack.

HL = number of chunks to remove
None
None

None

None

FPS (Floating Point Stack top) decreased by HL * 9
DE, HL

No values are removed from the deallocated space.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

510

Appendix A: System

Routines — Memory

DeallocFPS1

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Removes space in bytes from the Floating Point Stack.

DE = number of bytes to remove
None
None

None

None

FPS (Floating Point Stack top) decreased by HL
HL

No values are removed from the deallocated space.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory 511

DelMem

Category: Memory

Description: Deletes RAM from an existing variable. This routine will only delete the RAM. If
the variable deleting from has a size field, it is NOT UPDATED. Updating must
be done by the application.

Inputs:

Registers: HL = address of first byte to delete
DE = number of bytes to delete

Flags: None
Others: None
Outputs:

Registers: DE = intact
BC = amount deleted

RAM deleted
Flags: None
Others: None
Registers All
destroyed:
Remarks: See InsertMem routine.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

512 Appendix A: System Routines — Memory

DelMem (continued)

Example: Delete 10 bytes at the beginning of an AppVar.
LD HL,AppVarName
RST rMov9ToOP1 ; OP1 = name of AppVar
B_CALL ChkFindSym ; look up in symTable
JR NC,..Created ; jump if it exists
B_JUMP ErrUndefined ; error if not there

; DE = pointer to size bytes of AppVar

Created:

PUSH DE ; save pointer to start of
; size bytes of data
INC DE
INC DE ; move DE to 1st byte of
; AppVar Data
LD HL,10 ; number bytes to insert
EX DE,HL ; HL = pointer to start of
; delete, DE number bytes
B_CALL DelMem ; delete the memory
POP HL ; HL = pointer to size bytes
PUSH HL ; save
B_CALL IdHLind ; HL = size of AppVar,
; number bytes
XOR A ; clear CA
LD BC,10
SBC HL,BC ; decr by amount deleted
EX DE,HL
POP HL ; pointer to size bytes
; location
LD (HL),E
INC HL
LD (HL),D ; write new size.
AppVarName: DB AppVarObj,'AVAR',0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

513

DelVar

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Deletes a variable stored in RAM.

All of the inputs for this routine are the outputs of FindSym and ChkFindSym .
It is common to call one of these routines and then call DelVar immediately
after.

HL = pointer to start of symbol table entry of variable
DE = pointer to start of data storage of variable
B = 0 if variable resides in RAM else it is the page in the archive it is stored

None
None

None
None
None
All

OP1 — OP6 are preserved.

Variable’s symbol entry and data are deleted.

Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.

Error if the variable resides in the archive.

: Delete the variable 'A' if it exists

LD HL,AName
RST rMov9ToOP1 ; OP1 = variable a
B_CALL FindSym ; look up
JR C,..deleted ;jump if variable is not
; created
B_CALL DelVvar
..Deleted:
AName:
DB RealObj,'A',0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

514

Appendix A: System Routines — Memory

DelVarArc

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Deletes a variable from RAM or the archive.

HL = pointer to symbol table entry of variable to delete

DE = pointer to start of data for variable

B = archived status

0 = RAM otherwise the ROM page in Flash for the variable

None
None

None
None

Variable’s symbol entry and data deleted if in RAM, otherwise the symbol table
entry is only deleted and the variable data is marked for deletion on the next
garbage collection.

Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.
All

See DelVar and DelVarNoArc routines.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory 515

DelVarNoArc

Category: Memory

Description: Deletes variable from RAM.
No archive checking performed.

Inputs:

Registers: (HL) = sign digit of symbol table entry
DE = data pointer to data

Flags: None
Others: None
Outputs:
Registers: None
Flags: Regraph flag set if varGraphRef flag of symbol was set.
Others: None
Registers All
destroyed:
Remarks: See DelVar for more information.

This routine should only be called if you are sure that your variable will never
be archived. Generally, it is better to use the DelVarArc or DelVar routines.

Variable’s symbol entry and data are deleted.

Graph is marked dirty if variable was used during graphing.
All global memory pointers are adjusted.

Error if the variable resides in the archive.

Example: : Delete the variable 'A' if it exists:
LD HL,Aname
RST rMov9ToOP1 ; OP1 = variable a
B_CALL FindSym ; look up
JR C,..deleted ; jump if variable is not
; created

B_CALL DelVarNoArc

Deleted:

Aname:
DB RealObj,'A',0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

516

Appendix A: System Routines — Memory

EditProg

Category:

Description:

Inputs:
Registers:
Flags:
Others:

Outputs:
Registers:
Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

This routine will insert all of free RAM into a Program, Equation, or AppVar.
The intent is for the variable to be able to be edited without having to
continuously allocate and deallocate memory. Once the edit is completed, a
call to CloseProg is made to return what is not used back to free RAM.

DE = pointer to start of variables data storage area
None
None

None
None
Each of following are two-bytes:

(iMathPtrl) = pointer to the start of the variables data storage area.
THIS MUST STAY INTACT WHILE THE EDIT IS IN SESSION.
(iMathPtr2) = pointer to the byte following the variable data. This is the next
location the data area can grow into.
(iMathPtr3) = pointer to the byte AFTER the last byte of free RAM inserted.
The data being input cannot be written into this RAM location.
(iMathPtr4) = size of RAM block moved to allow the RAM to be inserted.
DO NOT CHANGE THIS VALUE.
All

The application can must change the pointer value in (iMathPtr2) as the
variables data size grows or shrinks. This value is needed by the close routine.

No memory allocation/deallocation can be done in this state.

Contents of variables may by copied or changed, but not their sizes.

The Floating Point Stack may be copied to/from, but not grown or shrunk.
The hardware stack may change, calls, RET, push, and pop.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory 517

EnoughMem

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Checks if an imputed amount of RAM is available. This routine will also
attempt to free RAM that is taken by temporary variables that have been
marked dirty but not yet deleted.

HL = amount of RAM to check for being available
None
None

DE = amount of RAM to check for being available
CA = one (set) if there is insufficient RAM available
None

All

None
No error is generated.
See MemChk.

TI-83 Plus Developer Guide Initial Release October 29, 1999

518

Appendix A: System Routines — Memory

Exch9

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Exchanges (swaps) two nine-byte blocks of memory.

DE = address of start of one nine-byte block
HL = address of start of second nine-byte block

None
None

None
None

Nine bytes originally at DE are now at original HL
Nine bytes originally at HL are now at original DE

A, BC, DE, HL

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

519

ExLp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Exchanges blocks of memory of up to 256 bytes.

B = number of bytes; 0 = 256
DE = address of start of one nine-byte block
HL = address of start of second nine-byte block

None
None

None
None

Block originally at DE is now at original HL
Block originally at HL is now at original DE

A, BC, DE, HL

None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

520

Appendix A: System Routines — Memory

FindAlphaDn

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Memory

This is used to search the symbol table, for all of the variables of a certain
type, alphabetically in descending order.

Each call to this routine returns the variable name preceding the one input in
OP1.

None
None

OP1 = variable name to find the previous before, usually output from the last
call to this routine.

(OP1) must have the type of variable searching for set.

The name input in order to have the very last name for a certain type varies by
the variable’s type:

Real, Complex, Programs, AppVars, Group Vars:

OP1 +1 +2 [+3 | +4 | +5 +6 +7 +8
Object OFEh | ? ? ? ? ? ? ?
Type

All other types:

OP1 +1 +2 +3 | +4 +5 [+6 | +7 | +8
Object variable OFEh | ? ? ? ? |7 ?
Type token

If a previous variable name is found then:
HL = pointer to the symbol table entry of the variable found

CA = 0 if a previous variable name was found
=1 if no previous variable name exists

If a previous variable name is found then:
OP1 and OP3 = the variable name found

Otherwise :
OP1 = variable name input
All

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

521

FindAl phaD N (continued)

RAM used: OP2, OP3

upDownPtr — two byte pointer

Remarks: ProgObj, ProtProgObj, and TempProgObj are grouped together.

ListObj and CListObj are grouped together.

NewEquObj and EquObj are grouped together.
See FindAlphaUp , SrchVLstUp , SrchVLstDn .

Example: Find all of the programs that are currently created, search alphabetically in

descending order.

FindPrograms:
B_CALL
LD
LD
LD

LD
FindLoop:
B_CALL

RET

; OP1 = next list name

JR

ZeroOP1
A,ProgObj
(OP1),A
A,OFEh
(OP1+1),A
FindAlphaDn

C

FindLoop

; looking for a list

; name = FEh, so the last
; program alphabetically is
; found

; see if find another program

; name
; return if no more program
; names not found yet

; find previous using one just

; found as input

TI-83 Plus Developer Guide

Initial Release October 29, 1999

522

Appendix A: System Routines — Memory

FindAlphaUp

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Memory

This is used to search the symbol table, for all of the variables of a certain
type, alphabetically in ascending order.

Each call to this routine returns the next variable name following the one input
in OP1.

None
None

OP1 = variable name to find the next after, usually output from the last call to
this routine.

(OP1) must have the type of variable searching for set.

The name input in order to have the very first name for a certain type varies by
the variable’s type:

Real, Complex, Programs, AppVars, Group Vars:

OP1 +1 +2 | +3 | +4 | +5 +6 +7 +8
Object 00 ? ? ? ? ? ? ?
Type

All other types:

OP1 +1 +2 +3 | +4 +5 [+6 | +7 | +8
Object variable OFFh | ? ? ? ? |7 ?
Type token

If a next variable name is found then:
HL = pointer to the symbol table entry of the variable found

CA = 0 if a next variable name was found
=1 if no next variable name exists

If a next variable name is found then:
OP1 and OP3 = the variable name found

Otherwise:
OP1 = variable name input
All

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

523

FindAl phaU P (continued)

RAM used: OP2, OP3

upDownPtr — two byte pointer

Remarks: ProgObj, ProtProgObj and TempProgObj are grouped together.
ListObj and CListObj are grouped together.
NewEquObj and EquObj are grouped together.
See FindAlphaDn , SrchVLstUp , SrchVLstDn.

Example: Find all of the lists that are currently created, search alphabetically in
ascending order.

FindLists:

FindLoop:

B_CALL
LD
LD
LD
LD
LD

LD

B_CALL
RET

; OP1 = next list name

JR

ZeroOP1
A ListObj
(OP1),A

A tVarLst
(OP1+1),A
A,OFFh

(OP1+1),A

FindAlphaUp
C

FindLoop

; looking for a list
; list designator token

; set name to FFh, so that the
; first list alphabetically is
; found

; see if find another list name
; return if no more list names
; not found yet

; find next using one just found
; as input

TI-83 Plus Developer Guide

Initial Release October 29, 1999

524

Appendix A: System Routines — Memory

FindApp

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:

Flags:

Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory

Searches for an application that may be stored in Flash ROM.

None
None
OP1 = name of application to search for

A = ROM page application starts on if found

CA = 0 if application exists
CA =1 if application does not exist

None
All

appSearchPage (two-bytes)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

FindAppNumPages

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Finds the number of 16K pages an application uses in archive memory

A = first page of application
None
None

A = first page of application
C = number of 16K pages the application uses

None
None
BC, DE

If an application was not found on the given page, C will equal 0.

IN A,(memPageAPort) ; gets the current memory
; page for app. Make sure
; this is on the first page
; of a multi-page
; application.
; finds the total number of
; pages the application
; uses in archive memory.
; A = number of pages

B_CALL FindAppNumPages

LD AC

For multi-page apps, create a routine that will reside on the first page of the
application that will return the memory page.
i.e., Get_First_Page:

IN A,(memPageAPort) ; get the memory page of
; the first application
; page.

RET

TI-83 Plus Developer Guide

525

Initial Release October 29, 1999

526

Appendix A: System Routines — Memory

FindAppDn

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Searches for the next application in Flash ROM whose name is alphabetically
less than the name in OP1.

None
None
OP1 = the name to find an application less than

If searching for all of the application names in descending alphabetical order
then this name is either the previous one found or the initial name used to start
the search.

To initialize the search to find the last application name alphabetically, set
(OP1 + 1) = OFEh.

None

CA = 1if no application with a lesser name exists. The previous found is the
first alphabetically.

CA = 0 if an application less than OP1 was found.
OP1 = application name found if one exists.
All

OP2, OP3, appSearchPage (two-bytes)

No information about what ROM page the application resides on is returned.
To get this information a FindApp needs to be done.

A loop that finds all of the application names in descending order.

B_CALL ZerroOP1 ; initialize OP1 for 1st search

LD A,OFEh

LD OP1+1),A ; set OP1 = name > any valid
; name

..loop:

B_CALL FindAppDn ; look for next lesser
; alphabetically

JR NC,..loop ; jump if found one, go look for
; next one

RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

527

FindAppUp

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Searches for the next application in Flash ROM whose name is alphabetically
greater than the name in OP1.

None
None
OP1 = the name to find an application greater than

If searching for all of the application names in ascending alphabetical order
then this name is either the previous one found or the initial name used to start
the search.

To initialize the search set OP1 = all 0’s with a system call to ZerroOP1.

None

CA = 1if no application with a greater name exists. The previous found is the
last alphabetically.

CA = 0 if an application greater than OP1 was found
OP1 = application name found if one exists
All

OP2, OP3, appSearchPage (two-bytes)

No information about what ROM page the application resides on is returned.
To get this information a FindApp needs to be done.

A loop that finds all of the application names in ascending order.

B_CALL ZerroOP1 ; initialize OP1 for 1st search
..loop:
B_CALL FindAppUp ; look for next higher
; alphabetically
JR NC,..loop ; jump if found one, go look for
; next one
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

528 Appendix A: System Routines — Memory

FiIndSym

Category: Memory
Description: Searches the symbol table structure for a variable.

This search routine is used to find variables that are not programs, AppVar, or
Groups. See ChkFindSym .

This is used to determine if a variable is created and also to return pointers to
both its symbol table entry and data storage area.

This will also indicate whether or not the variable is located in RAM or has
been archived in Flash ROM.

Inputs:

Registers: (OP1 + 1) to (OP1 + 6) = variable name
See documentation on variable naming conventions.

Flags: None
Others: None
Outputs:

Registers: CA flag = 1 if symbol was not found
= 0 if symbol was found

If symbol is found, additional outputs are:

ACC lower 5 bits = data type

ACC upper 3 bits = system flags about variable. Mask via “AND” with a
value of 1Fh to obtain data type only.

B = Oifvariable is located in RAM else variable is archived
B = ROM page located on
If variable is archived then its data cannot be accessed directly, it
must be unarchived first.
HL = pointer to the start of the variables symbol table entry
DE = pointer to the start of the variables data area if in RAM
Flags: None
Others: OP1 = variable name
Registers All
destroyed:
Remarks: This will not find system variables that are preallocated in system RAM such

as Xmin, Xmax etc. Use RclSysTok to retrieve their values.
This will not find applications.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

529

FlndSym (continued)

Example:

; Look for List L1 in the symbol table.

; If it exists and is archived then unarchive it and relook it up.
; If it does not exist create it as a real list of 10 elements.

Relook:

VarCreated:

DONE:

L1lname:

LD
B_CALL
B_CALL
JR

LD
B_CALL
PUSH
PUSH
B_CALL
POP
POP
JR

LD
OR

JR
B_CALL
JR
RET

DB

HL,L1name
Mov9ToOP1
FindSym
NC,varCreated

HL,10
CreateRList
HL
DE
OP4ToOP1
DE
HL
done

AB
A
Z,done

Arc_Unarc
Relook

; OP1 = variable name
; look up
; jump if it exists

; size to create at data

; save during move
; OP1 = name
; restore

; check for archived
;in RAM ?
 yes

; unarchive if enough RAM
; look up pointers again in
; RAM now

ListObj,tVarLst,tL1,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

530

Appendix A: System Routines — Memory

FixTempCnt

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Resets pTempCnt back to a input value, and delete all temps with name
counters greater than or equal to that value.

DE = value to pTempCnt to
None
None

None
None
(pTempCnt) = DE

All temps created with pTempCnt >= input DE are deleted. For example, if
input DE = 5 then temps with counter value 5 or greater $0500 will be deleted.
$0600...

All

pTempCnt

See the Temporary Variables section in Chapter 2. Also, see the CleanAll
routine.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

531

FlashToRam

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Copies bytes from Flash to RAM.

A = page of source (Flash)

HL = offset of source (Flash)

DE = RAM location of destination
BC = number of bytes to copy

None
None

None
None
None

Certain pages in Flash cannot be copied. This routine will wrap to the next
page if the offset = 8000h. A will be incremented to the next page, and HL will

be reset to 4000h, and the copying will go on.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

532

Appendix A: System Routines — Memory

InsertMem
Category: Memory
Description: Inserts RAM into an existing variable.

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

This routine will only insert the RAM — it stays uninitialized and if the variable
inserting into has a size field, it is NOT UPDATED. Updating must be done by
the application.

A check for enough free RAM must be done by the application. This routine
assumes the RAM is available.

HL = number of bytes of RAM to insert, no check is made for enough free
RAM.

DE = point of insertion address — this cannot be the first byte of the variable’s
data — if it is, its symbol table entry will not have the correct pointer to
the data.

None
None

DE = intact, the point of insertion address
None

RAM inserted into variable.

All

See DelMem.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory 533

InsertMem (continuea)

Example: Insert 10 bytes at the beginning of an Application Variable.
LD HL,10 ; number bytes to insert
B_CALL ErrNotEnoughMem ; error if 10 bytes are not
; free
LD HL,AppVarName
RST rMov9ToOP1 ; OP1 = name of AppVar
B_CALL ChkFindSym ; look up in symTable
JR NC,..Created ; jump if it exists
B_JUMP ErrUndefined ; error if not there

; DE = pointer to size bytes of AppVar

..Created:

PUSH DE ; save pointer to start of
; size bytes of data

INC DE

INC DE ; move DE past size bytes

LD HL,10 ; number bytes to insert

B_CALL InsertMem ; insert the memory

POP HL ; HL = pointer to size bytes

PUSH HL ; save

B_CALL IdHLind ; HL = size of AppVar,
; number bytes

LD BC,10

ADD HL,BC ; increase by 10, amount
; inserted

EX DE,HL

POP HL ; pointer to size bytes
; location

LD (HL),E

INC HL

LD (HL),D ; write new size.

AppVarName: DB AppVarObj,'AVAR',0

TI-83 Plus Developer Guide Initial Release October 29, 1999

534

Appendix A: System Routines — Memory

LoadCIndPaged

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Reads a byte of data from any ROM page. Main use is for applications to read
data from variables that are archived, without having to unarchive them to
RAM first.

B = ROM page to read byte from
HL = address of byte on the ROM page,
(4000h—7FFFh)

None
None

C = byte of data from input ROM page and Offset
None

None

C

B, HL are not changed. See the LoadDEIndPaged routine. Also, see the
Accessing Archived Variables Without Unarchiving section in Chapter 2.

Read the byte of data from ROM page OCh, address 4006h.

LD B,0ch ; ROM page
LD HL,4006h ; offset
B_CALL LoadCIndPaged ; C = byte

RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

LoadDEIndPaged

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Read two consecutive bytes of data from any ROM page. The main use of this
routine is for applications to read data from variables that are archived, without

having to unarchive them to RAM first.

B = ROM page of first of two bytes to read
HL = address of byte on the ROM page,
(4000h—7FFFh)

None
None

E = first byte read
D = second byte read

None
None
DE, C

B, HL are set to the address of the second byte read. If the second byte of

data is not on the same ROM page as the first, the switch to the next ROM

page is handled. See the LoadCIindPaged routine. Also, see the Accessing
Archived Variables Without Unarchiving section in Chapter 2.

Read two bytes of data from ROM page 0Ch, address 4006h.

LD B,0ch ; ROM page
LD HL,4006h ; offset
B_CALL LoadDEIndPaged ; D = byte @ (4007h),

; E = byte @(4006h)
RET

TI-83 Plus Developer Guide

535

Initial Release October 29, 1999

536 Appendix A: System Routines — Memory

MemChk

Category: Memory
Description: Returns the amount of RAM currently available.
Inputs:

Registers: None

Flags: None
Others: None
Outputs:
Registers: HL = amount of RAM available, in bytes
Flags: None
Others: None
Registers BC, HL
destroyed:
Remarks: If a system editor is open, this will always return O bytes available. System

edits use all of free RAM during the edit.

The amount returned may be inaccurate if there are any temporary variables
that are marked as dirty but not yet deleted. There are two ways/options to
solve this:

» The routine CleanAll can be used to remove all temporary variables. This
is fine as long as an application is not using temporary variables.
Temporary variables are returned by the parser if the result is not RealObj
or CplxObj, make sure that none are still in use.

» Use the routine EnoughMem instead, it will delete only temps that are
marked dirty.

Example: Delete all temporary variables and then check if there is at least 100 bytes
available.
B_CALL CleanAll ; delete all temporary
; variables
B_CALL MemChk ; HL = amount of mem free
LD DE,100
OR A ;CA=0
SBC HL,DE ; if CA =1 then less than 100
; bytes are available
JR C,Not_100 ; jump if <100

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

537

PagedGet

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Used for reading data from the archive with the Caching technique. This
routine will return the next byte and also refill the cache when it is emptied.

A call to the SetupPagedPtr routine must be done once before using this
routine to retrieve data from the archive.

None
None

These are initially set by the SetupPagedPtr routine and are updated each
time a call is made to the PagedGet routine. Applications do not need to
modify these RAM locations.

(pagedPN) = current Flash page.
(pagedGetPtr) = current Flash address.

ACC = byte read
None
None
ACC

Crossing ROM page boundaries is handled. See the SetupPagedPtr ,
LoadCIndPaged , and LoadDEIndPaged routines. Also, see the Accessing
Archived Variables Without Unarchiving section in Chapter 2.

LD B,PageToGet

LD DE,AddressToGet

B_CALL SetupPagedPtr ; setup paged get

B_CALL PagedGet ; ACC = byte from archive
LD E.A ; E = byte

B_CALL PagedGet

LD DA ; DE = 2 bytes read from

; archive

TI-83 Plus Developer Guide

Initial Release October 29, 1999

538 Appendix A: System Routines — Memory

RclGDB2

Category: Memory
Description: Recalls graph database.
Inputs:
Registers: A =tVarGDB
Flags: None
Others: OP1 = data base name
(chkDelPtr1) contains data pointer
Outputs:
Registers: None
Flags: None
Others: None
Registers
destroyed:
Remarks: Acts exactly as the user controlled RclIGDB command: Restores graph mode

stored in the GDB and replaces all equation variables with those stored in the
GDB and all range values with those stored in the GDB.

Example: : Restore GDB?2 if it exists:
B_CALL ZeroOP1 ; zero out OP1
LD HL,GDB2Name ; hame -> OP1
LD DE,OP1
LD BC,03
LDIR
B_CALL FindSym ; find & point to symbol.
RET C ; abort if does not exist.
B_CALL RclGDB2 ; restore graph data base.

GDB2Name:

DB GDBODbj,tVarGDB,tGDB2 (008h,061h,001h)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

539

RcIN

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory
Recalls the contents of variable N if it exists.

None
None
None

None
None
System error if N does not exist.

OP1 = contents of N if RealObj
OP1/0OP2 = contents of N if CpIxObj

All

OP1-0P2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

540

Appendix A: System Routines — Memory

RclVarSym

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory
Recalls the contents of variable A — Z or THETA.

None
None
OP1 = name of variable to recall

None

None

System error if variable does not exist.

If a variable other than A — Z or THETA, then nothing is done.

OP1 = contents of variable if RealObj
OP1/0OP2 = contents of variable if CpIxObj

All

OP1-0P2

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

541

RclIX

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory
Recalls the contents of variable X if it exists.

None
None
None

None
None
System error if X does not exist.

OP1 = contents of X if RealObj
OP1/0OP2 = contents of X if CplxObj

All

OP1-0P2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

542

Appendix A: System Routines — Memory

RclY

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory

Recalls the contents of variable Y if it exists.

None
None
None

None
None
System error if Y does not exist.

OP1 = contents of Y if RealObj
OP1/0OP2 = contents of Y if CplxObj

All

OP1-0P2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

543

RedimMat

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Redimensions an existing matrix.

HL = new dimension of matrix wanted
None
OP1 = name of matrix

None
None
None
All, iMathPtrl, insDelPtr

OP1, OP3

If not enough room, then a memory error will occur.

The space is allocated/deallocated. The pointers are adjusted accordingly. All
the new elements are set to 0. The old values of the elements that are not
removed are kept. A Matrix cannot be modified if it is archived.

B_CALL ZeroOP1
LD HL,MatrixA
LD DE,OP1
LD BC,3
LDIR
B_CALL ChkFindSym
JR C,..skip
LD A B
OR A
JR NZ,..skip
LD HL,0505h
B_CALL RedimMat
..skip:
RET
MatrixA: DB MatObj,tVarMat,MatA

; zero out OP1

; load matrix name into OP1
; find matrix variable name
; if not found, skip over work

; see if archived
; skip if variable archived

; redimensionalize matrix to 5x5

TI-83 Plus Developer Guide

Initial Release October 29, 1999

544

Appendix A: System Routines — Memory

SetupPagedPtr

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Initializes the process of reading data from the archive using the caching
method.

The PagedGet routine is used to read data from the archive after this
initialization routine is called.

Start address of the first byte of data to be read

B = ROM page of the first byte

DE = address of first byte, on the ROM page
(4000h—7FFFh)

None
None

None
None

These outputs are inputs to the PagedGet routine. An application should not
change these values directly.

pagedCount = O on first call
pagedPN = current Flash page
pagedGetPtr = current Flash address

None

See the PagedGet routine. Also, see the Accessing Archived Variables
Without Unarchiving section in Chapter 2.

LD B,PageToGet

LD DE,AddressToGet

B_CALL SetupPagedPtr ; setup paged get

B_CALL PagedGet ; ACC = byte from archive
LD E.A ; E = byte

B_CALL PagedGet

LD DA ; DE = 2 bytes read from

; archive

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

545

SrchVLstDn, SrchVLstUp

Category:

Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Memory

Searches the 1/O var list in the backward/forward direction, next lower
alphabetically, and by type in the following order:

PROGRAM,ProtPtrg 05h,06h
DATABASE 08h
PICTURE 07h
LIST,Clist 01h,0Dh
MATRIX 02h
YVARS 03h
AppVars 15h
Group 17h
WINDOW 0Bh
ZSTO 0Ch
TABLE RANGE 0Dh
REAL 00h
Cplx 0Ch
String 04h
Apps 14h

OP1 = last name and type found in variable format

inGroup, (IY + groupFlags) should be reset
inDelete, (IY + ioDelFlag) should be reset

(varClass) should be set to 9 to search through the entire list.

HL = pointer to symbol table entry if found

CA =0 if found
CA =1 if did not find anything

OP1 = var format of next variable if found

All registers

This calls FindAlphaUp/FindAlphaDn
type.

to find variables within each variable

TI-83 Plus Developer Guide

Initial Release October 29, 1999

546

Appendix A: System Routines — Memory

StMatEl

Category:

Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory

Stores an element to a matrix. Convert matrix or element to complex if

necessary.

BC = column number
DE = row number

None

OP1 = existing matrix variable name
FPST = value to store (real or complex)

None

graphDraw set if graph reference flag was on.

OP1 = value originally on FP stack
FPST was popped, value no longer on FPST
Value was stored to the matrix

All

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

o547

StoAns

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Memory
Stores OP1 to Ans variable.

None
None

OP1[,0OP2] = value if real [complex]
Otherwise OP1 = name of variable that contains the data to store into Ans

None
None

Data stored if possible
OP1[,0OP2] = original contents if real[complex]
else OP1 = Ans variable name

FPS, OP1, OP2, OP4

If input was a parser temporary ($P) variable, it is marked dirty (to be deleted
by memory management).

A memory error occurs if there is not enough room to store the value.

Ans is the same system variable that is found by pressing [2nd] [Ans] on the
calculator keyboard.

Use RclAns to recall the contents of Ans.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

548

Appendix A: System Routines — Memory

StoGDB2

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Stores the current graph mode settings and equations into a system graph
database variable.

None
None
OP1 = graph database name to store to

None

None

GDB created or modified
All

(ioData) buffer used to store name temporarily.

This creates the graph database if it did not exist already. If it did exist, it is
resized to fit the size of the variables to be stored.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

StoN

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory
Stores OP1 to sequence variable n.

None
None
OP1 = a real number, positive integer

None
None

Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

All

OP1, OP2, OP4

This does not store to variable N.
This will store to the system variable n used in Sequence graphing.
To recall, see RcIN.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

550 Appendix A: System Routines — Memory

StoOther

Category: Memory

Description: General purpose routine that stores data to user created variables that are not
of type ProgObj, GDBODbj, GroupObj, AppObj or PictOb;.

Also, this routine should not be used to store to system variables such as
Xmin.

Inputs:
Registers: None
Flags: None

Others: OP1 = name and type of variable to store to.
(OP1) = data type, followed by the name.
FPST = data to store if not storing to CpIxObj
FPS1/FPST = data to store if storing to CpIxObj

If the variable storing to is RealObj or CpIxObj, then the data storing CANNOT
be another variable. The FPS must contain the literal data stored.

If the variable storing to is not RealObj or CpIxObj, then the data storing MUST
be another variable. This variable can either be user created or a temporary
variable returned by the parser after executing an expression.

If the variable storing to is already created, then it must reside in RAM and not
the archive.

Outputs:
Registers: None

Flags: Both the graph and the table can be marked dirty if the variable stored to was
used in a graph equation.

Others: Error if the data is not the correct type to be stored to the variable — for
example, store list data to a matrix.

Error if the variable storing to is archived.

Error if not enough memory.

If no errors:

If the variable storing to was not created on input, this routine will create it.
Data stored to the variable.

OP1/OP2 = data that was stored.

The data is removed from the FPS.

Registers All
destroyed:

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory 551

StoOther (continued)

Remarks: See the StoSysTok routine. See Chapter 2 for Error Handlers and Floating
Point Stack.
Example: Store list L1 to list L3.
LD HL,L1name
B_CALL Mov9ToOP1 ; OP1 =L1 name
B_CALL PushRealO1 ; FPST = L1 name
LD AtL3 ; token for L3
LD (OP1+2),A ; change OP1 to L3 name
B_CALL StoOther ;store L1 -> L3
RET
L1name:
DB ListObj,tVarLst,tL1,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

552

Appendix A: System Routines — Memory

StoR

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory
Stores OP1[,0P2] -> user variable R.

None
None

OP1 = real value to store
or
OP1/0OP2 = complex value to store

None
None

Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

All

; set OP1 to R name

OP1, OP2, OP4
Note that there is not a RcIR routine, but one can be made by:
B_CALL RName
B_CALL RclVarSym
; This sets Rto 1:
B_CALL OP1Setl
B_CALL StoR
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory 553

StoSysTok

Category: Memory

Description: Stores a value in OP1 to system variable specified by token number in the
accumulator.

Inputs:

Registers: A = system variable token number
OP1 = real number to save

Flags: None
Others: None
Outputs:
Registers: OP1 = contents of system variable
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: ; Store -3 into Xmin
B_CALL OP1Set3 ; register OP1 = floating point 3
B_CALL InvOP1S ; hegate FP number in OP1,
; OP1=-3
LD A XMINt ; ACC = Xmin variable token value
B_CALL StoSysTok ; store OP1 to Xmin,

TI-83 Plus Developer Guide Initial Release October 29, 1999

554

Appendix A: System Routines — Memory

StoT

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory
Stores OP1[,0OP2] to user variable T.

None
None

OP1 = real value to store
or
OP1/0OP2 = complex value to store

None
None

Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

All

; set OP1to T name

; This sets Tto 0. :B_CALL

OP1, OP2, OP4
Note that there is not a RclT routine, but one can be made by:
B_CALL TName
B_CALL RclVarSym
B_CALL StoT
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Memory

555

StoTheta

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Memory

Stores OP1[,0OP2] to user variable Theta.

None
None

OP1 = real value to store
or
OP1/0OP2 = complex value to store

None
None

Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

All

Note that there is not a RclTheta routine, but one can be made by:

OP1, OP2, OP4
B_CALL ThetaName
B_CALL RclVarSym
; This sets Theta to 2...
B_CALL OP1Set2
B_CALL StoTheta
RET

; set OP1 to Theta name
; do recall

;INIT Theta =2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

556 Appendix A: System Routines — Memory

StoX

Category: Memory
Description: Stores OP1[,0P2] to user variable X.
Inputs:

Registers: None

Flags: None
Others: OP1 = real value to store
or
OP1/0OP2 = complex value to store
Outputs:
Registers: None
Flags: None
Others: Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer
Registers All
destroyed:
RAM used: OP1, OP2, OP4
Remarks: See RclX to recall contents of X.
Example:
; This sets X to 2:
B_CALL OP1Set2
B_CALL StoX JINIT X =2
RET

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Memory

557

StoY

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Memory
Stores OP1[,0OP2] to user variable Y.

None
None

OP1 = real value to store
or
OP1/0OP2 = complex value to store

None
None

Sets chkDelPtr3 = system table pointer
Sets chkDelPtrl = data pointer

All

OP1, OP2, OP4
See RclY to recall contents of Y.

; This sets Y to 2:

B_CALL OP1Set2
B_CALL StoY JINITY =2
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

A System Routines —
Parser

BINOPEXEC ... ittt ettt e e e e e e e 559
V=T = o P 561
L0113 (= o 563
= L £ | o P 565
RCISYSTOK ... et e e e e e e e e e e e e 567
LT CCTE] TG SRR 568
O L@ = o 570

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Parser

559

BInOPEXxec

Category:
Description:

Inputs:

Registers:

Flags:
Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Parser

Executes functions that have two arguments as inputs.

ACC = function to execute (see table below)
None

OP1 = second argument
FPST = first argument (Floating Point Stack Top), see example

None

None

OP1 =result
All

Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is
not available.

It can also be used in cases of mixed argument types. Like the example below
where a real is added to a list.
Valid arguments can be obtained from the T/-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

560

Appendix A: System Routines — Parser

BInOPEXxec (continued)

Example: S5+l

LD HL,Point5

RST rMov9ToOP1 ;OP1=5

B_CALL PushOP1 ; OP1 -> FPST, or OP1/OP2 is
; complex number

LD HL,L1name

RST rMov9ToOP1 ; OP1 =L1 name

LD A,OPAdd ; function is addition

B_CALL BinOPExec ; OP1 =resultof 5+ L1

Llname: DB RListobj,tVarLst,tL1,0,0

BinOPExec equates and functions

Equate Function Equate Function Equate Function
OPBal bal(OPSum sum(OPProd prod(
OPBInCdf binomcdf(OPBInPdf binompdf(OPIrr irr(
OPFinNom >Nom(OPFinEff >Eff OPFinDbd dbd(
OPRandNrm randNorm(OPstDev stdDev(OPVariance variance(
OPPm Prn(OPlIntr TInt(OPRandBin randBin(
OPNormalPdf normalpdf(OPINormal invNorm(OPNormal normalcdf(
OPPoiPdf poissonpdf(OPPoiCdf poissoncdf(OPGeoCdf geometcdf(
OPGeOPdf geometpdf(OPChiPdf xypdf(OPTpdf tpdf(
OPAdd + OPSub - OPMult *
OPDiv o] OPPower N OPXroot xQy
OPEq = OPRound2 round(OPConst Fill(
OPAug augment(OPMax max(OPMin min(
OPLcm lem(OPGcd ged(tEvalF u(beg,end
tMedian median(tMean mean(OPRandint randInt(
OPANd and OPOr or OPXor xor
OPNcr nCr OPNpr nPr OPLt <
OPLe o] OPGt > OPGe 0
OPRand1 randM(OPlInstr inString(OPPxtst PxI-Test(
OPRtOPY R>Pr(OPRtOPo R>Pé(OPPtorx P>Rx(
OPPtoRy P>Ry(

Note: For tEvalF there are really three inputs but execution still goes through the entry
point for two arguments. The Equation name needs to be pushed onto the FPS first,
then the second argument and the third in OP1. This is only valid in Sequential graph
mode.

The second argument is the start value.
The third argument is the end value.
A list of results is returned.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Parser 561

FiveExec

Category: Parser

Description: Executes functions that have five arguments as input.
Inputs:

Registers: ACC = function to execute (see table below)
Flags: None

Others: OP1 = fifth argument
FPST = fourth argument (pushed onto FPS fourth)
FPS1 = third argument (pushed onto FPS third)
FPS2 = second argument (pushed onto FPS second)
FPS3 = first argument (pushed onto FPS first)

Outputs:
Registers: None
Flags: None
Others: OP1 =result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is
not available.
Valid arguments can be gotten from the T/-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

562 Appendix A: System Routines — Parser

FiveExec (continued)

Example: ;fin(YL, X, 2, 4, .5);
LD HL,Y1name
RST rMov9ToOP1 ; OP1 =Y1 name
B_CALL PushOP1 ; save to FPST;
B_CALL XName ; OP1 = X var name
B_CALL PushOP1 ; push onto FPST, Y1 -> FPS1;
B_CALL OP1Set2 ;OP1=2
B_CALL PushOP1 ; push onto FPST, Y1 -> FPS2,
; X -> FPS1;
B_CALL OP1Set4 ;OP1=4
B_CALL PushOP1 ; ->FPST, Y1->FPS3, X->FPS2,
; 2->FPS1, 4->FPST;
LD HL,point5
RST rMov9ToOP1 ; OP1=5;
LD A,OPFmin 1 ; function is fMin(
B_CALL FiveExec ; OP1 =result
Y1Name: DB EquObj,tvarEqu,tY1,0,0
Point5: DB 0,80h,50h,0,0,0,0,0,0

FiveExec equates and functions

Equate Function Equate Function Equate Function
OPSeq seq(OPQuad fnint(OPFmin fmin(
OPFmax fMax(

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Parser

563

FourExec
Category: Parser
Description: Executes functions that have four arguments as input.
Inputs:
Registers: ACC = function to execute (see table below)
Flags: None
Others: OP1 = fourth argument
FPST = third argument (pushed onto FPS third)
FPS1 = second argument (pushed onto FPS second)
FPS2 = first argument (pushed onto FPS first)
Outputs:
Registers: None
Flags: None
Others: OP1 = result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is

not available.

Valid arguments can be obtained from the T/-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

564

Appendix A: System Routines — Parser

FOUrExec (continueq)

Example:
LD

RST

B_CALL
B_CALL
B_CALL
B_CALL
B_CALL

LD

RST

LD

B_CALL
Y1Name: DB
Point5: DB

FourExec equates and functions

; nDeriv(Y1, X, 2, .5);

HL,Y1Name

rMov9ToOP1 ; OP1 =Y1 name

PushOP1 ; save to FPST;

XName ; OP1 = X var name

PushOP1 ; push onto FPST, Y1 -> FPS1;

OP1Set2 ;OP1=2

PushOP1 ; push onto FPST, Y1 -> FPS2,
; X ->FPS1,;

HL,point5

rMov9ToOP1 ;OP1=5;

A,OPDeriv81 ; function is nDeriv

FourExec ; OP1 =result

EquObj,tvarEqu,tY1,0,0

0,80h,50h,0,0,0,0,0,0

Equate Function Equate Function Equate Function
OPNpv npv(OPNormal normalcdf(OPMItRadd *row+(
OPSeq seq(OPQuad fnint(OPDeriv81 nDeriv(
OPSolve solve(OPFmin fMin(OPFmax fMax(
OPDf Fcdf(

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Parser 565

Parselnp

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Parser

Executes an equation or program stored in a variable.

None
None
OP1 = name of equation or program to execute

None

None

If executed an equation, then OP1 and Ans contain the result.
If executed a program, then no result is returned.

Errors will be generated during parsing — to avoid them from being displayed,
install an error handler before parsing.

All

See the Parsing Function, Temporary Variables section in Chapter 2 for further
information.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

566 Appendix A: System Routines — Parser

Parselnp (continued)

Example: Parse the graph equation y1 and store the answer in Y. Install an error handler
around the parsing and the storing to catch any errors.
RET CA=0if OK, else RET CA = 1.

LD HL,y1Name
RST rMov9ToOP1 ; OP1 =yl name
; if an error while parsing go to this label
AppOnErr ErrorHan ; error handler installed,
; (macro)
B_CALL Parselnp ; execute the equation

; returns if no error

B_CALL CkOP1Real ; check if RealObj
JR Z,storit ;jump if itis real
AppOffErr ; remove the error handler

; come here if any error was detected
; error handler is removed when the error occurred

ErrorHan:
B_CALL CleanAll ; clean any temp vars created by
; parser
SCF ; CA = 1 signals failure
RET
storit:
B_CALL StoY ; store to Y, RET if no error,
; else ErrorHan
AppOffErr ; remove error handler
B_CALL CleanAll ; clean any temp vars created by
; parser
CP A ; CA =0 for no error
RET
y1lName:
DB EquObj,tvarEqu,tY1,0,0

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Parser 567

RclSysTok

Category: Parser

Description: Recalls a value in system variable specified by token number in the
accumulator to OP1.

Inputs:

Registers: A = system variable token number

Flags: None
Others: None
Outputs:
Registers: OP1 = contents of system variable
Flags: None
Others: None
Registers
destroyed:
Remarks:
Example: LD A XMINt

B_CALL RclSysTok ; OP1 = contents of Xmin

TI-83 Plus Developer Guide Initial Release October 29, 1999

568 Appendix A: System Routines — Parser

ThreeExec

Category: Parser

Description: Executes functions that have three arguments as input.
Inputs:

Registers: ACC = function to execute (see table below)
Flags: None

Others: OP1 = third argument
FPST = second argument (pushed onto FPS second)
FPS1 = first argument (pushed onto FPS first)

Outputs:
Registers: None
Flags: None
Others: OP1 =result
Registers All
destroyed:
Remarks: Checks for valid argument types are done.

The values pushed onto the FPS are removed.

This entry point should only be used if direct access to a particular function is
not available.

Valid arguments can be obtained from the T/-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Parser

569

ThreeExec (continued)

Example: ; row +([A],1,2)

LD HL,MatAName

RST rMov9ToOP1 ; OP1 =[A] name

B_CALL PushOP1 ; save to FPST;

B_CALL OP1Setl ;OP1=1

B_CALL PushOP1 ; push onto FPST, mat name
; moves to FPS1;

B_CALL OP1Set2 ; OP1 =2;

LD A,OPRAdd ; function is row +

B_CALL ThreeExec ; OP1 = result, a temp Matrix
; variable

MatAName: DB MatObj,tVarMat,tMatA,0,0

ThreeExec equates and functions

Equate Function Equate Function Equate Function
OPPmn Prn(OPlIntr Tint(OPBinpdf binompdf(
OPBincdf binomcdf(OPIrr irr(OPNpv npv(

OPSum sum(OPProd prod(OPNormalPdf normalpdf(
OPRandNrm randNorm(OPRandBin randBin(OPRandInt randInt(
OPINormal invNorm(OPlInstr inString(OPNormal normalcdf(

OPDt tedf(OPFpdf Fpdf(Opchi xycdf(
OPSubstr sub(OPDeriv81 nDeriv(tEvalF u#(

OPRadd row-+(OPRswap rowSwap(OPRmIt row*(
OPMItRadd *row+(OPSolve solve(

Note: For tEvalF there are really four inputs but execution still goes through the entry point
for three arguments. The Equation hame needs to be pushed onto the FPS first, then
the second argument and then third, and then the fourth in OP1. This is only valid in
Sequential graph mode.

The second argument is the start value.
The third argument is the end value.
The fourth argument is the step size.

A list of results is returned.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

570

Appendix A: System Routines — Parser

UnOPEXxec

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Parser
Executes functions that have one argument as the input.

ACC = function to execute (see table below)
None
OP1 = argument

None

None

OP1 =result
All

This entry point should only be used if direct access to a particular function is
not available.

It is also useful to use this entry point when arguments are not simply real
numbers. See example below.

Valid arguments can be obtained from the T/-83 Plus Guidebook.

(continued)

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Parser

o571

UNOPEXecC (continuea)

Example: ; sin(L1)
LD HL,L1name
RST rMov9ToOP1 ; OP1 = L1 name;
LD A,OPSin ; function is addition
B_CALL UnOPExec ; OP1 =result of sin(L1) a
; temp list variable
Llname: DB RListObj,tvarLst,tL1,0,0

UnOPEXxec equates and functions

Equate Function Equate Function Equate Function
OPLog log(OPTenX 107X(OPLn In(
OPEtoX e™X(OPNot not(OPSin sin(
OPAsiIn sin-1(OPCos cos(Pacos cos-1(
OPTan tan(OPAtan tan-1(OPSinh sinh(
OPAsinh sinh-1(OPCosh cosh(OPAcosh cosh-1(
OPTanh tanh(OPAtanh tanh-1(OPInverse recipricol
OPDet det(OPSqroot a OPSquare "2
Opnegate) OPlpart iPart(OPFpart fPart(
OPlIntgr int(tEvalF y#(value OPConj conj(

OPFact ! OPAbs abs(OPldent identity(
OPTranspose mattranspose OPSum sum(OPProd prod(
OPMin min(OPMax max(OPTofrac >Frac
OPReal real(OPImag imag(OPAnNgle angle(
OPEXxpr expr(OPRound2 round(OPLength length(
OPCube 3 OPChbrt 30 OPDim dim(
OPRad r OPDeg a tMean mean(
tMedian median(OPRef ref(OPRref rref(
OPCumSum cumSum(OPNormalPdf normalPdf(OPInormal invNorm(
OPDeltalst -List(OPBal bal(OPStdev stdDev(
OPVariance variance(OPRand rand

Note: For tEvalF there are really two inputs but execution still goes through the entry point
for one argument. The Equation name needs to be pushed onto the FPS first, and

the second argument in OP1.

This is valid in all graph modes.
The second argument is the value to evaluate at.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
A Screen

(0] o1 |1 I T o3 (=T=1 o [T 573

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Screen

573

ForceFullScreen

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Screen

Switches the TI-83 Plus to Full Screen mode if currently In Horizontal or

Vertical split mode.

None
None
None

None
None
None
All

Graph is dirtied if mode switched.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

System Routines —
A Statistics

DB R S .ttt 575
(@ o TSLV£= T 576
o] =1 Y- 1 S 577

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Statistics 575

DelRes

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Statistics
Invalidates the statistic results.

None
None
None

None
None

Statistic result variables marked as undefined.
RegEq variable is deleted.

All

Note that this routine does not set the graphDraw flag even if the stat result
variable is used in a graph equation. This is a known problem.

B_CALL DelRes ; invalidate stat results

TI-83 Plus Developer Guide Initial Release October 29, 1999

576

Appendix A: System Routines — Statistics

OneVar

Category:
Description:

Inputs:

Registers:

Flags:

Others:

Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Statistics
Executes one-variable statistics.

ACC = number of arguments input

No_Del_Stat, (IY + more_flags) = 1 if:

Stat results that are not associated with one-variable stats are not to be
deleted when this routine executes.

Also no Min’s, Max’s, or Quartiles will be computed.

Otherwise: previous statistic results are cleared.

If ACC = 1 then OP1 = data list name.

If ACC = 2 then OP1 = frequency list name.
FPST = data list name.

Dimensions must match if two arguments.

None

None

If no errors then one-variable stat output variables are updated.
All

If the input lists have a formula associated with them this routine will not
execute it and update the list values. This must be done by the calling routine.

See Find_Parse_Formula .

Run one-variable stats on data list L1 and freq. list L2.

LD HL,L1name
RST rMov9ToOP1 ;OP1=11
RST rPushRealO1 ; data ->FPST
LD HL,L2name
RST rMov9ToOP1 ;OP1=1L2
B_CALL OneVar ; execute 1-variable stats
RET
Llname: DB ListObj,tVarLst,tL1,0,0

L2name: DB ListObj,tVarLst,tL2,0,0

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Statistics 577

Rcl_StatVar

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Statistics
Recalls a statistic result variable to OP1.

ACC = stat variable to recall token value. These are listed in the TI83plus.inc
file.

None
None

None

None

OP1 = stat variable value, floating-point number
All but the ACC.

The statistic variables are validated by running a regression or one/two
variable statistic commands.

This routine does not check that the statistic variables are valid. Recalling one
when not valid may result in random values.

Recall statistic result variable X mean, assume statistic have been computed.

LD A,tXMean ; token value for XMean
B_CALL Rcl_StatVvar ; recall contents to OP1

TI-83 Plus Developer Guide Initial Release October 29, 1999

System Routines —
Utility

N] NN = U T PR 580
(0707 1Y 10 10 0 S 581
CPHLDE ... e 582
[T E7= 1] 1= AN o Lo [P 583
ENADICADGo —————— 584
L@ o N[=T | P 585
Lo [o] N (=TT = | 586
(TS0 T: LY AN T PPN 587
LT o] =Y o O 588
| o (o =T @4 1 4o | N [T = T R SURPPPRRRR 589
JFOrCEGIaphKEYcoviiiiiii i e 590
JFOrceGraphNOKEYcoceiiiii e e 591
YT 4 L =T T S 592
=T 01T = PSSP 593
Mov7B, Mov8B, MovIB, Mov10B, MOVI8Bccccueiiiiiiiiiiiieecveiee e 594
MOVOOPLOPZ ... e et e e e e e e e e e s 595
Y o)y A L@ 2 O o P 596
oY A I 101 i 597
oY A I 101 U 598
0 e €] o P 599
OP1EXOP2, OP1EXOP3, OP1EXOP4, OP1EXOP5, OP1EXOPS,

OP2EXOP4, OP2EXOP5, OP2EXOP6, OPS5EXOPGcccvvvveeeeeeeeeeieiieeceies 600

OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOP5, OP1ToOPG6,
OP2ToOP1, OP2ToOP3, OP2ToOP4, OP2ToOP5, OP2ToOP6,
OP3ToOP1, OP3ToOP2, OP3ToOP4, OP3ToOP5, OP4ToOP1,
OP4ToOP2, OP4ToOP3, OP4ToOP5, OP4ToOP6, OP5T0OP1,
OP5ToOP2, OP5ToOP3, OP5ToOP4, OP5ToOP6, OP6TOOP1,

OPBTOOP2, OPBTOOPS.......ciiiiiiiiiieeeee e 601

POSNOOINT. ... ettt e e e e e e e b e e 602

RCIANS L 603

Ly (o= Yo FaN o] o] =1 g1 1 AV A= T o T 604

Y2100] PP PP 605
(continued)

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Display 579

Contents (continued)

Y2100 O] PP PPPPPP 606
SEIXXXXOPZ .. 607
SETORANA ...ttt ettt e e e e e e 608
] £ (O] 0)Y/ RSP 609
S 1 = o | 1 PP 610

TI-83 Plus Developer Guide Initial Release October 29, 1999

580

Appendix A: System Routines — Utility

AnsName
Category: Utility
Description: Loads OP1 with the variable name Ans.
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP1 contains the variable name Ans.
Registers All
destroyed:
Remarks:
Example: B_CALL AnsName

; load OP1 with Ans variable

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility 581

ConvDimOO

Category: Utility

Description: Converts floating-point number in OP1 to a two-byte value and compares that
value with an input two-byte value.

Inputs:
Registers: HL = two-byte test value

Flags: None
Others: OP1 = floating-point value, must be a positive integer < 10,000
Outputs:

Registers: If no error on the input:
A = LSB hex value of OP1
DE = entire hex value of OP1

Flags: None
Others: None
Registers All
destroyed:
Remarks:
Example: Test OP1 = positive integer < or = 400:
LD HL,400d ; test value
B_CALL ConvDim00

TI-83 Plus Developer Guide Initial Release October 29, 1999

582

Appendix A: System Routines — Utility

CpHLDE

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Utility

Non destructives compare of registers HL and DE.

HL = two-byte value
DE = two-byte value

None
None

HL, DE intact

CA=1ifDE>HL
Z=1ifHL =DE
CA=0ifHL > DE

None
None

B_CALL

CpHLDE

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

583

DisableApd

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility

Turns off Auto Power Down feature.

None
None
None

None
None
apdAble, (IY + apdFlags) is reset
None

Applications should re-enable APD before exiting. See EnableApd .

TI-83 Plus Developer Guide

Initial Release October 29, 1999

584

Appendix A: System Routines — Utility

EnableApd

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility

Turns on Auto Power Down.

None
None
None

None
None
None
None

The T1-83 Plus will now power down if not used for approximately

four minutes.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility 585

EOP1NotReal

Category: Utility

Description: Tests object in OP1 to be a real data type. If it is not, then jump to the system
error DATA TYPE.

Inputs:
Registers: None
Flags: None
Others: (OP1) = objects data type byte
Outputs:
Registers: None
Flags: None
Others: Error if not OP1 — it does not have the data type RealObj.

Registers A
destroyed:

Remarks:

Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

586

Appendix A: System Routines — Utility

Equ_or NewEqu

Category: Utility

Description: Sees if A = EquObj or NewEquObj type.

Inputs:

Registers: A =type, can have flags set

Flags: None
Others: None
Outputs:
Registers: A = type with flags reset
Flags: Z set if A = EquObj or NewEquODbj type
Others: None
Registers None
destroyed:
Remarks:
Example: ; see if ACC is EquObj or NewEquObj
Equ_or_NewEqu::
AND 1Fh
CP EquObj
RET z
CP NewEquObj
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

587

GetBaseVer

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility

Returns current operating system version number.

None
None
None

A = major version number
B = minor version number

None
None
A, B

For Operating system 1.00: A=1,B =0.

TI-83 Plus Developer Guide

Initial Release October 29, 1999

588

Appendix A: System Routines — Utility

GetTokLen

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Utility

Copy a token'’s string to OP3 and return the number of characters in the string.

HL = pointer to either a one or two byte token
None
None

A = number of characters in the token’s string
BC = also contains the number of characters in the token’s string
HL = address of OP3, location the string was copied to

None
String copied to RAM, starting at OP3
All

OP3 — OP3 + (length of string)

Find the number of characters in the ‘Sin(‘ token string.

LD A,tSin ; Sin(token

LD (OP1),A

LD HL,OP1 ; pointer to token

B_CALL GetTokLen ; ACC = 4, the length of ‘Sin(‘

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Utility

589

JForceCmdNoChar

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Exits the Application and returns to the home screen.

This should not be used to exit an application if the TI-83 Plus system monitor
is closing the application due to link activity or turning off.

This routine will be the used in most applications to Close the application and
return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

None
None
Monitor vectors should be set to the Application loader.

None

None

The home screen is given control.
All

Only use a B_JUMP with this entry point.

This can be used by an application anytime — the return stack does not need
to be at any certain level. This routine will set the stack level back to a safe
level.

ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.

Set the monitor vectors to the Application loader and exit the application and
return control to the home screen.

Exit_App:
B_CALL ReloadAppEntryVecs ; load the monitor vectors
; to App loader
B_JUMP JForceCmdNoChar ; exit the app and

; initiate home screen

TI-83 Plus Developer Guide

Initial Release October 29, 1999

590

Appendix A: System Routines — Utility

JForceGraphKey

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility

Exits the Application and returns to the graph screen with a key to be executed
in the graph screen.

This should not be used to exit an application if the TI-83 Plus system monitor
is closing the application due to link activity or turning off.

This routine will be the used in most applications to Close the application and
return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

ACC = key to execute in the graph screen
None
None

None
None
None
All

Only use a B_JUMP with this entry point.

This can be use by an application anytime — the return stack does not need to
be at any certain level. This routine will set the stack level back to a safe level.

ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.

Set the monitor vectors to the Application loader and exit the application and
enter trace mode.

Exit_App:
B_CALL ReloadAppEntryVecs ; load the monitor vectors
; to App loader
LD AkTrace
B_JUMP JForceGraphKey ; exit the app enter trace

; mode

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

591

JForceGraphNoKey

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Exits the Application and returns to the graph screen.

This should not be used to exit an application if the TI-83 Plus system monitor
is closing the application due to link activity or turning off.

This routine will be the used in most applications to close the application and
return control to the TI-83 Plus system.

Before an application jumps to this entry point it must make certain the
systems monitor vectors are set to the Application loader context.

See Entering and Exiting an Application Properly.

None
None
None

None
None
None
All

Only use a B_JUMP with this entry point.

This can be use by an application anytime — the return stack does not need to
be at any certain level. This routine will set the stack level back to a safe level.

ASM PROGRAMS SHOULD NOT USE THIS ROUTINE TO EXIT BACK TO
THE SYSTEM.

Set the monitor vectors to the Application loader and exit the application and
give control to the graph context.

Exit_App:
B_CALL ReloadAppEntryVecs ; load the monitor vectors
; to App loader
LD AkTrace
B_JUMP JForceGraphNoKey ; exit the app

TI-83 Plus Developer Guide

Initial Release October 29, 1999

592

Appendix A: System Routines — Utility

MemClear
Category: Utility
Description: Clears a memory block (to 00h’s).
Input:
Registers: BC = number of bytes in block
HL = address of first byte in memory block
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: Memory block cleared
Registers A, BC, DE, HL
destroyed:
Remarks: BC mustbe >1
Example: TBD

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

593

MemSet

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Sets a memory block to a given value.

A = value to set all bytes in memory block
BC = number of bytes in block
HL = address of first byte in memory block

None
None

None

None

Memory block set
BC, DE, HL

BC mustbe > 1
TBD

TI-83 Plus Developer Guide

Initial Release October 29, 1999

594

Appendix A: System Routines — Utility

Mov/B, Mov8B, Mov9B, Mov10B, Mov18B

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:
Remarks:

Example:

Utility

Copies a short memory block where X = MovXB, where X is the number of

bytes.

HL = start of source block
DE = start of destination block

None
None

None
None

Block starting at original HL copied to area starting at original DE.

BC, DE, HL

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

595

Mov9OP10OP2

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Copies a block of 18 bytes of RAM/ROM to OP1/0OP2, with the first nine-bytes
to OP1 and the second nine-bytes to OP2.

This is most commonly used to copy a complex element of either a list or
matrix to OP1/OP2, skipping the 10th and 11th bytes of OP1.

HL = pointer to start of 18 bytes to copy
None
None

DE =DE + 18

None

First nine-bytes OP1 and first nine-bytes of OP2 contain the 18 bytes copied.
All but ACC

Copy the first element of complex list L1 to OP1/OP2:

LD HL,L1name

RST rMov9ToOP1 ; OP1 =L1 name

B_CALL FindSym ; look up, DE = pointer to data

EX DE,HL ; HL = pointer to data

INC HL

INC HL ; HL = pointer to 1st element

B_CALL Mov9OP10P2 ; OP1 =real part, OP2 = image
; part, of element 1

RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

596

Appendix A: System Routines — Utility

Mov9OP2Cp

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Utility
Copies a floating-point number from RAM/ROM to OP2 and compares itto a
floating-point number in OP1.

HL = pointer to floating point to copy to OP2
None
OP1 = floating-point number

None

Z=1if OP1=0P2
Z=0,CA=1:0P1<O0OP2
Z=0,CA=0:0P1=>=0P2

OP1 = intact
OP2 = floating-point number copied
All

Both OP1 and the float copied to OP2 are preserved.

Copy the first element of real list L1 to OP2 and compare it to a floating-point
number in OP1.

LD HL,L1name
RST rMov9ToOP1 ; OP1 =L1 name
B_CALL FindSym ; look up, DE = pointer to data
EX DE,HL ; HL = pointer to data
INC HL
INC HL ; HL = pointer to 1st element
B_CALL Mov9OP2Cp ; copy element to OP2 and
; compare to OP1
RET

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

597

Mov9ToOP1

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Utility

Copies nine-bytes of RAM/ROM to OP1.

HL = pointer to the nine-bytes to copy
None
None

None

None

OP1 contains the nine-bytes
All but ACC

B_CALL Mov9ToOP1

TI-83 Plus Developer Guide

Initial Release October 29, 1999

598

Appendix A: System Routines — Utility

Mov9ToOP2

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Utility

Copies nine-bytes of RAM/ROM to OP2.

HL = pointer to the nine-bytes to copy
None
None

None

None

OP2 contains the nine-bytes
All but ACC

B_CALL Mov9ToOP2

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

599

MovFrOP1

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility

Copies OP1 (nine bytes) to another RAM location.

DE = pointer to destination of move
None
None

None
None

HL=0OP1+9
DE=DE+9
OP1 copied to (DE)

All but ACC

TI-83 Plus Developer Guide

Initial Release October 29, 1999

600

Appendix A: System Routines — Utility

OP1ExXOP2, OP1ExOP3, OP1EXOP4, OP1EXOPS5,
OP1ExXOP6, OP2ExOP4, OP2EXOP5, OP2EXOPG6,

OPSEXOPG6
Category: Utility
Description: Exchanges 11-byte contents of OP(x) with OP(y).
Inputs:
Registers: None
Flags: None
Others: None
Outputs:
Registers: None
Flags: None
Others: OP(X) = former contents of OP(Y)
OP(Y) = former contents of OP(X)
Registers A, BC, DE, HL
destroyed:
Remarks: Combinations Available:
(y) OP1 OP2 OP3 OP4 OP5 OP6
(x)
OP1 X X X X X
OoP2 X X X
OP3
OP4
OP5 X
OP6
Example: ; Exchange contents of OP2 and OP4
B_CALL OP2ExXOP4

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

601

OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOP5,
OP1ToOP6, OP2ToOP1, OP2ToOP3, OP2ToOP4,
OP2T0o0OP5, OP2ToOP6, OP3ToOP1, OP3ToOP2,
OP3ToOP4, OP3ToOP5, OP4ToOP1, OP4ToOP2,
OP4ToOP3, OP4ToOP5, OP4ToOP6, OP5T0OP1,
OP5To0OP2, OP5ToOP3, OP5ToOP4, OP5ToOPG6,
OP6ToOP1, OP6TOOP2, OP6TOOPS

Category:
Description:
Inputs:
Registers:
Flags:
Others:
Outputs:
Registers:
Flags:
Others:
Registers
destroyed:

Remarks:

Example:

Utility
Copies 11 bytes from OP(x) to OP(y).

None
None
OP(x)

None

None

OP(y) = former contents of OP(x)
BC, DE, HL

Combinations Available:
Dest(y) OP1 OP2 OP3 OP4
Source(x)

OP1 X X X
OoP2 X X X
OP3 X X X
OP4 X X X

OP5 X X X X
OP6 X X

B_CALL OP1ToOP3

OP5 OP6
X X
X X
X
X X

X
X

TI-83 Plus Developer Guide

Initial Release October 29, 1999

602

Appendix A: System Routines — Utility

PosNoOInt

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:

Registers
destroyed:

Remarks:

Example:

Utility

Checks if OP1 is a positive non-zero integer floating point.

None
None
OP1 = floating-point number

None

Z = 1if OP1 = positive non 0 integer
Z = 0 if non integer or negative or O

None
ACC

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix A: System Routines — Utility

603

RclAns

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Recalls answer to OP1[,OP2] or at least set up pointers to it.

None

None

None

None

None

OP1[,OP2] if real [or complex]

AF, BC, DE, HL,

Entire code:
CALL AnsName ; see these routines for more
JP RclVarSym ; ’slgéothese routines for more

; info

AnsName puts the name of Ans into
OP1 = 00h,tAns,00h,00h,.....00h
= 00h,072h,00h,00h,.....00n

RclvarSym will recall the contents of the variable to OP1 if it is real, to OP1
and OP2 if the variable is complex and otherwise leaves the name as is in
OP1 and returns HL as the symbol table pointer and DE as the data pointer as
in ChkFindSym .

B_CALL RclAns ; This example presumes that
; you already know that Ans is
; @ Real number.

LD A9 ; display up to 8 digits

B_CALL DispOP1A

TI-83 Plus Developer Guide

Initial Release October 29, 1999

604

Appendix A: System Routines — Utility

ReloadAppEntryVecs

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Utility
Sets the system monitor vector table to the Application loader context.

This routine is used by advanced applications that override the system monitor
vector table. This routine should be called by the application just before
exiting.

This routine should only be used by applications, not ASM programs.

None
None
None

None

None

Monitor system vectors are now set to the application loader.
All

Assume we have an application that overrode the monitor vectors and our
application is exiting because the user pressed the [Quit] key.

ChkForQuit:

CP kQuit ; quit key?
JR NZ,notQuit ; jump if no
B_CALL ReloadAppEntryVecs ; restore monitor to
; application loader
B_JUMP JForceCmdNoChar ; switch to the home

, screen

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Utility 605

SetXXOP1

Category: Utility
Description: Sets OP1 equal to a floating-point integer between 0 and 99.
Inputs:

Registers: ACC = integer value to set OP1 equal to

Flags: None
Others: None
Outputs:

Registers: None
Flags: None
Others: OP1 = floating-point integer between 0 — 99

Registers All
destroyed:
RAM used: OP1
Remarks: No error checking is done for invalid input.
Example: Set OP1 =75.
LD A75
B_CALL SetXXOP1 ; OP1 = floating point 75

TI-83 Plus Developer Guide Initial Release October 29, 1999

606

Appendix A: System Routines — Utility

SetXXOP2

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:
Remarks:

Example:

Utility
Sets OP2 equal to a floating-point integer between 0 and 99.

ACC = integer value to set OP2 equal to
None
None

None
None
OP2 = floating-point integer between 0 — 99

All
OoP2
No error checking is done for invalid input.
Set OP2 = 75.
LD A75
B_CALL SetXXOP2 ; OP2 = floating point 75

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Utility 607

SetXXXX0P2

Category: Utility
Description: Sets OP2 equal to a floating-point integer between 0 and 65535.
Inputs:

Registers: HL = integer value to set OP2 equal to

Flags: None
Others: None
Outputs:

Registers: None
Flags: None
Others: OP2 = floating-point integer between 0 — 65535

Registers All
destroyed:
RAM used: OoP2
Remarks:
Example: Set OP2 = 7523.
LD HL,7523
B_CALL SetXXXXO0P2 ; OP2 = floating point 7523

TI-83 Plus Developer Guide Initial Release October 29, 1999

608

Appendix A: System Routines — Utility

StoRand

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

RAM used:

Remarks:

Example:

Utility

Initializes random number seeds on OP1 value.

None
None
OP1 = real number 0e0 ... < 1E9

None

None

OP1 = same value as unmodified input.
All

OP1, OP2, OP6

Storing a 0 to the seed will reinitialize the random number generator to its
original state from the factory.

The input value in OP1 must be a real number, but it does not have to fall
within the specified range. If it does not, it will be modified (exponent reduced,
sign changed, and truncated) to fit in the range.

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix A: System Routines — Utility 609

StrCopy

Category: Utility
Description: Copy a null-terminated string in memory.
Inputs:

Registers: HL = starting address of source string
DE = starting address of destination

Flags: None
Others: ~ None
Outputs:
Registers: None
Flags: None
Others: ~ None
Registers A, DE, HL
Destroyed:
Remarks: This is like a C language StrCpy() function.

When complete:
* HL s left pointing to the null terminator of the source string.
» DE is left pointing to the null terminator of the destination string.

Example:

TI-83 Plus Developer Guide Initial Release October 29, 1999

610

Appendix A: System Routines — Utility

StrLength

Category:
Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:

Others:
Registers
destroyed:
Remarks:

Example:

Utility

Returns the length of a zero (0) terminated string residing in RAM.

HL = pointer to start of zero terminated string, in RAM
None
None

BC = length of string, not including terminating O
None

None

BC

TI-83 Plus Developer Guide

Initial Release October 29, 1999

A System Routines —
Miscellaneous

(0010170 1 =30 612

TI-83 Plus Developer Guide Initial Release October 29, 1999

612

Appendix A: System Routines — Miscellaneous

ConvOP1

Category:

Description:

Inputs:

Registers:

Flags:
Others:
Outputs:

Registers:

Flags:
Others:

Registers
destroyed:

Remarks:

Example:

Miscellaneous

Converts a floating-point number in OP1 to a two-byte hexadecimal number in

DE.

OP1 = floating-point number

None
None

A = LSB hex value
DE = entire hex value
If OP1 exponent > 3 error

None
None

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix

B

T1-83 Plus “Large”
Character Fonts

The font map below shows each character code, the symbolic name, and the character map.

00h 01lh 02h 03h D4h 05h g6h O7h
NOT USED LrecurN LrecurU UrecurV LrecurW Lconvert Lsqup LsqDgwn
08h 09h 0Ah 0Bh 0Ch 0Dh OEh OFh
Lintegral Lcfoss Lboklcon Lcrosglcon Ldotlcor LsubT LcubeR LhexF
oo w | T = F
10h 11h 12h 13h L4h 15h 16h 17h
Lroot linverse Lsquare Langle Ldegiee Lradiaf Ltranspose LLE
I
18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh
LNE LGE Lneg Lexponent | store Lten LupArrow LdoynArrow
]

TI-83 Plus Developer Guide

Initial Release October 29, 1999

614

Appendix B: Tl -83 Plus “Large” Character Fonts

20h 21h 22h ?3h P4h 25h 46h 27h
Lspace Lexclam lquote Lpound Lfqurth Lpergent Lampefsand Lapostrgphe
28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh
LIParen LrParen Lasterisk LplugSign Lcommp Ldash Lperiod Lslash
- R | | o
30h 31lh 32h B33H 34H 35H 36H 37H
LO L1 L2 L3 L4 L5 | 6 L7
38H 39H 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh
L8 L9 Lcolon isemicolon LLT LEQR LGT Lquestion
- = T
|
40h 41h 42h 13h 14h 45h 46h 47h
LatSign llcapA LicapB LgapC L¢apD LgapE LcapF LcapG

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix B: Tl -83 Plus “Large” Character Fonts

615

48h 49h 4Ah 4Bh 4Ch 4Dh 4Eh 4Fh
LcapH Lcapl | capJ LcapK LcapL L¢apM L¢apN LdapO
50h 51h 52h 53h 54h 55h 56h 57h
LcapP LcapQ LcapR LcapS LcapT |capU lcapV LicapwW
58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh
LcapX LcapY Lcapz | theta Lhackslash LrBrack Lcare Lunderdcore
60h 61h 62h 63h 54h 65h 66h 6[7h
Lbackquote lUa b Lc Ld Le L] Lg
68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh
Lh Li Lj Lk L Lm L Lg

| |

TI-83 Plus Developer Guide

Initial Release October 29, 1999

616 Appendix B: Tl -83 Plus “Large” Character Fonts

70h 71h 72h 73h V4h 15h 16h 77h
Lp Lq Lr Ls | t Lu Ly Ly
78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh
Lx Ly Lz LIBrace Lipar LriBrace Ltildp LinvEQ
80h 81h 82h 83h B4h 85h g6h 87h
LsubO Lsubl | sub2 lsub3 Lpub4 Lgub5 Lsub6 Lsyb7
88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh
Lsub8 Lsub9 | capAAcute LgapAGrave LcppACaret LcapADier LaAcyte LaGraye
| (nE
90h 91h 92h 03h D4h 95h 96h 97h
LaCaret L aDier L¢apEAcute LcgpEGrave LcapECaret LcapHDier LeAcut¢ LeGrave
N N

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix B: Tl -83 Plus “Large” Character Fonts

617

98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh
LeCaret L eDier L¢aplAcute LcaplGrave LcaplCaret LcaplDigr LiAcute LiGrave
N N .l l.

AOh Alh A2h A3h Adh A5h Abh AT7h
LiCaret LiDier LcgpOAcute LcapgOGrave LcapPCaret LcapOpier LoAcutg LoGrave

| ain |
A8h A9h AAh ABh ACh ADh AEh AFh
LoCaret L oDier L¢apUAcute LcgpUGrave LcapUCaret LcapUDier LuAcute LuGrave

a'm nin n u am nin n u
BOh Blh B2h B3h B4h B5h B6h B7h
LuCaret L uDier L¢gapCCed LdCed LgapNTilde LnTilde Laccent Lgrave
B8h B9h BAh BBh BCh BDh BEh BFh
Ldieresis LquesDown LexclamDown Lalpha Lbetp Lgamma Lcappelta Ldelta

i li- I L it

TI-83 Plus Developer Guide

Initial Release October 29, 1999

618 Appendix B: Tl -83 Plus “Large” Character Fonts

COh Cih C2h C3h C4ah C5h C6h C7h
Lepsilon L|Brack Llambda Lmy Lpi Lrho Lcap$igma Lsigmg
C8h C%h CAh CBh CCh CDh CEh CFh
Ltau Lphi LcapOmega UxMean LyMean LsupX Lellipsis Lleft
T- &= e

DOh D1h D2h D3h D4h D5h D6h D7h
Lblock L per Lhyphen Ldrea Ltemp Lcupe Lenter Limag|

I O -

- 'I..
D8h D%h DAh DBh DCh DDh DEh DFh
Lphat | chi LptatF Ling Llistl LfinanN L2_r_pafen LblockArrow
EOh Elh E2h E3h E4h E5h E6h E7h
LcurO LcurO2 | curOcapA LcurOa Lqurl Lcufl2 Lcurl¢gapA Lcurla
I I] I

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix B: Tl -83 Plus “Large” Character Fonts

619

E8h E9h EAh EBh ECh EDh EEh EFh
LGline | Gthick LGabove LGbelow LGpath LGgnimate LGdqt LUpB|
|
|
FOh Flh
LDnBIk LcurFull

¥

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix

C

T1-83 Plus “Small”
Character Fonts

The font map below shows each character code, the symbolic name, and the character map.
Most characters are five pixels high, but a few are longer. The character widths are variable,
e.g. a space has a width of one pixel whereas an asterisk has width of five pixels. Character
maps usually include one blank pixel column on the right side to ensure spacing when printing

strings.

00h 01h 02h 03h D4h 05h Q6h 07h

NOT USED SrecurN SrecurU BrecurV SfecurW Scgonvert SFourSpaces SsgDpwn

08h 09h 0Ah 0Bh 0Ch 0Dh OEh OFh

Sintegral Sgross Sbgxlcon Scrogslcon Sdotlcgn SsubT ScubeR ShexF

Y %= g+ - 1 = |F

10h 11h 12h 13h £4h 15h 16h 17h

Sroot Sinverse Sqquare Sangle Sdegree Sradign Stranspose SLE

[-1 2 0 F| T =
L

18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh

SNE SGE Sneg Sexponent Sstore $ten SupArrow SdownArrow

= = " E |13 T 4

|

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix C: Tl -83 Plus “Small” Character Fonts

621

20h 21h 22h 23h P4h 25h 46h 7h
Sspace Sexclam Bquote Spound SHollar Spefcent Sampgrsand ~ Saposjrophe
I H : I
- H E 2 =
28h 29h 2Ah 2Bh 2Ch 2Dh 2Eh 2Fh
SIParen BrParen Spsterisk SplusSign Scomra Sdas Speriqd Sslash
L1 + 1 - v
|
30h 31lh 32h 33h B4h 35h 36h 37h
S0 S1 S2 S3 sS4 S5 S6 S7
38h 39h 3Ah 3Bh 3Ch 3Dh 3Eh 3Fh
S8 S9 Scolon [Ssemicolon SLT SE SGT bguestion
| | . -.I
| .l . -

Initial Release October 29, 1999

TI-83 Plus Developer Guide

622 Appendix C: Tl -83 Plus “Small” Character Fonts

40h 41h 42h 13h 14h 45h 46h 47h
SatSign BcapA bcapB $capC $capD $capE $capF YcapG
48h 49h 4Ah 4Bh ACh 4Dh 4Eh 4Fh
ScapH Scapl IScapJ BcapK BcapL $capM $capN $capO
50h 51h 52h 53h b4h 55h 56h 57h
ScapP ScapQ ScapR ScapS ScapT ScapU ScapV ScapwW
58h 59h 5Ah 5Bh 5Ch 5Dh 5Eh 5Fh
ScapX ScapY ScapZ Stheta $backslach SrBrack Scailet Sunddrscore

TI-83 Plus Developer Guide Initial Release October 29, 1999

Appendix C: Tl -83 Plus “Small” Character Fonts

623

60h 61h 62h 63h 54h 65h 66h 6[7h
Sbackquote $mallA SmallB SmallC SmpllD SmallE SmallF SmallG
*d |k d | F 3
68h 69h 6Ah 6Bh 6Ch 6Dh 6Eh 6Fh
SmallH Smalll SmallJ Snjallk SmallL SmaljM SmallN Smalld
(1 |= k|1 P N
70h 71h 72h 73h rah T5h 16h 7I7h
SmallP ISmallQ bmallR Smalls SmallT Smallu Smdllv Smallw
78h 79h 7Ah 7Bh 7Ch 7Dh 7Eh 7Fh
SmallX SmallY Smallz SIBrace Sbar S(Brace St(lde SinviEQ
|
= B R e b e
|

TI-83 Plus Developer Guide

Initial Release October 29, 1999

624

Appendix C: Tl -83 Plus “Small” Character Fonts

80h 81h 82h 83h B4h 5135h g6h 8[7h
Ssub0 Ssubl Ssub2 Ssub3 Bsub4 $sub5 Ysubb Skub?7
88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh
Ssub8 Ssub9 ScapAAcute $capAGrave SgapACaret ScapADier SaAfute SaGrave
HA A A A A & -:
90h 91h 92h 03h D4h 95h 96h 97h
SaCaret SaDier ScapEAcute SgapEGrave ScapECaret ScapEDier SeAcyite SeGraye
a5 EE £ E & %
98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh
SeCaret SeDier ScaplAcute ScgplGrave ScaplCaret ScaplDier SiAcute SiGrave

E & f 1 i T

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix C: Tl -83 Plus “Small” Character Fonts

625

-

d}

AOh Alh A2h A3h Adh A5h ABh A7h
SiCaret SiDier ScappOAcute ScapOGrave ScapOCaret ScapDier SoAcute SoGraVe

am . nin n "u
A8h A%h AAh ABh ACh ADh AEh AFh
SoCaret SoDier ScapUAcute SdapUGrave Sc@pUCaret ScapUDier SuAcpte SuGrayve

a'm . am nEn n u
BOh Blh B2h B3h B4h B5h B6h B7h
SuCaret SuDier ScapCCed YcCed YcapNTilde SnTilde Saccent Sgrave

l.l N ; l.l. .l l.
B8h B9h BAh BBh BCh BDh BEh BFh
Sdieresis SguesDown SexclamDown Sglpha Sbeta Sgamma ScapDelta Sdelta

N | | |

ot

-

TI-83 Plus Developer Guide

Initial Release October 29, 1999

626

Appendix C: Tl -83 Plus “Small” Character Fonts

COh Cih C2h C3h C4h C5h C6h C7h
Sepsilon {IBrack Slgmbda Smu Sp Srhp ScapSigma Ssigma
C8h C%h CAh CBh CCh CDh CEh CFh
Stau Sphi bcapOmega SxMean SyMean ISsupX Sellipsis Slef]

L- ':l:' f.! | -
DOh D1h D2h D3h D4h D5h D6h D7h
Sblock Sper $hyphen Sparea Stemp Sdube Senter Simag|

|

IR R - - . '
D8h D%h DAh DBh DCh DDh DEh DFh
Sphat Schi PstatF Sine SligtL SfinanN S2_r_ppren SnarrowCapE

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Appendix C: Tl -83 Plus “Small” Character Fonts 627

EOh Elh E2h E3h E4h E5h E6h E7h
SListLock Yscatterl Sschtter2 Sxyling1 Sxyline2 Sboxplotl Sboxplot2 Shistl

) EREg) Vg N .

E8h E9h EAh EBh ECh
Shist2 $modBox1 BmodBox2 Bnormall Shormal2
Ih HF I |- 7
I | |

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List —
System Routines

A
F Y 011 @) @ 2 4 o TSP 368. See Math
ADSOLPADSO2.... ettt a e e e e e earaaaa 369. See Math
AACOS . 370! See Math
A COSH e 371. See Math
ACOSRAU. ...ttt ettt e e e e e e e e e e e e e e e e aaaaaaaaaas 372, See Math
o | S RSREUPSRN 351/ See List
AAIMEIR <.ttt ettt ettt et et e aaaaaaaaans 352, See List
AAIMROW ... e e e e et ettt e e e e e e e e e e eaaett e e e e eaeeee] 483. See Matrix
AlEQ o ————— 259, See Graphing and Drawing
AlIOCEPS ... 241. See Floating Point Stack
AIOCFPSL ... 242. See Floating Point Stack
AN 373! See Math
ANSNAIME ... e e e e e e e e e e et e e e e e e e e e e et e aaaaaeens 580. See Utility
AP S BEUD ettt e et e e e e e e e e e e e e e e e e e e e aaaaaas 344, See Keyboard
FY o] 1 CT=] (OF= 1[PPI 337. See 10
Y o] o111 (4 o PP PPPPPPPPPPPPPPPP 338. See IO
N (o U o = o 488 See Memory
7N | o P UPPPTR 374, See Math
A S INH ettt et e et a e e et e e e e e e e e aaaaaaaaaaaaaas 375, See Math
ASINRAA. ... e e e e e e r e e e e rr s 376. See Math
AT AN 377. See Math
N 1= 12 PPPR 378. See Math
N = 1 124 = To RS PPPRPRR 379. See Math
AT ANH e 380. See Math
ATANRA. ... e e e e e 381. See Math
B
BINOPEXEC.......ciiiiiiiiiiiiiiiic s 559. See Parser
2 T Y= 65T o 1 U 159, See Display
BUFCIT e 260. See Graphing and Drawing
BUTCPY ..o 261/ See Graphing and Drawing

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List — System Routines 629

C
(AN o 1P 382, See Math
[o [0 N 383! See Math
CaNAIPNINS L.ttt 345, See Keyboard
L 5 N 384! See Math
CDIVBYREAL. ...ttt e e e e 385. See Math
(41 (o) PPN 386. See Math
L0 = = Lo ST UUPPPPRPUPPRP 387, See Math
(04 T=Tod 145y o] 111 1 F= To [SPPPPRPTPPN 160. See Display
CRKFINASYIM ..ot e e e e e e e e e e e e 489. See Memory
(O 1) (o | SO PSR 388, See Math
CICCMI e 262. See Graphing and Drawing
L 141 389! See Math
(@170 L [0 F PR RUPPPPPPPRPRP 390. See Math
CKOPLCO ...ttt ettt et e et ettt e et e et e e e e aeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaanas 391, See Math
(11O = K 4 o]) PP PP PPPPPPPPPP 392, See Math
CKOPLFPO ...ttt et e eeee e e ettt e et et aeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 393. See Math
L@] =t 1 = 1= 394. See Math
CKOPLREAI ...ttt e ettt e ettt e e e et e e e e e aaaaaaaaaaaaaaaaaaaaaaens 395, See Math
CKOPZ2FPO....ceiiieiiitieet ettt ettt e ettt e e e e e s bbbt e e e e e e e e nnbbbbeaaaeeeaaanes 396. See Math
CKOPZ2POS ...ttt e ittt eeeeeeeeeeeeeeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 397, See Math
(01 (@] S = L= T | 398. See Math
L0 1420] [| RSP 399, See Math
(0474 =1 1T | 1N o PSSP 400. See Math
(O 1= T a1 491, See Memory
ClEAIRECT ... ittt 264. See Graphing and Drawing
L0 [T T = L0 1 PSR 161 See Display
L I T SRS RPRRRN 265, See Graphing and Drawing
L1 I 1= SRR 267/ See Graphing and Drawing
L I N 401, See Math
(O I o o TP PP T 402, See Math
CIOSEEAItBUTINOR ...ttt e e 203. See Edit
ClOSEPTOQ ...ttt ettt et e e e e e e e e e e e e e e e e e e aaaaeas 492| See Memory
CIrGraphRE ... e 269. See Graphing and Drawing
LO4 1 O B PP PP PPPPPPPPPPPPPPPPPPPPP 162, See Display
L0 [1 I 1 | | S 163! See Display
L4 8 o TN 403, See Math
CIIOPLS .ttt ettt ettt e s e e e e e s e s e e e e a e 404. See Math
CIrOP2S ettt ettt ettt e e e e e e e e e e e e e e e e e e 164, See Display

TI-83 Plus Developer Guide Initial Release October 29, 1999

630

Reference List — System Routines

104 55T o] £ o F PP PP PP PP PP PPPPPPPPPPPPPPPPPY 165! See Display
L0 | 2o 1 | || U 166, See Display
(O [(151 1T PP PPPPPPPPPPPPPPPPPY 167 See Display
(031111027 =T SR 405. See Math
(010101011 1 S TP P PP RURPPPPPPRTTN 493 See Memory
L 406. See Math
(0] o | PSPPSR 407, See Math
(0] 0175 {3 PP PP P PP PP PP PPPPRPR 353, See List
CONVDIMOO ...ttt ettt et e ettt ettt ettt et e e e aaeeeaeeaeeaeaaaaaaens 581. See Utility
(0] 01 V7 I ol o] I PP PPPPPPPPPPPPPRPPPPPPPPPPY 354 See List
(070] 01V IR I o] X o PSPPI 355! See List
CONVOPL ..ottt ettt ettt et ettt e e et e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaas 612, See Miscellaneous
(010] BT < L PSPPI 408. See Math
0L 409, See Math
COSH L et eaaans 410, See Math
CPHLDE e et e e e et e e e e e e e e e et s, 582 See Utility
CPOINT e 270. See Graphing and Drawing
CPOINES ... e 272/ See Graphing and Drawing
CPOPLOPZ ...t e et 411, See Math
CPOPAOP3B ... ettt ettt ettt ettt e e et e e e et aaaaaaaaaaaaaaaaaaeaaaaaaaaaaaaaaaaaaans 412, See Math
CPYOLTORPSL. .. e 244, See Floating Point Stack
CPYOLTOFPS2.....c e e 244, See Floating Point Stack
CPYOLTORPSS... e 244, See Floating Point Stack
CPYOLTORPSA. ... 244, See Floating Point Stack
CPYOLTORPSS. ... e 244, See Floating Point Stack
CPYOLTOFPSG.....coeieiiiiiie e 244, See Floating Point Stack
CPYOLTOFPST ...t 244, See Floating Point Stack
CPYOLTORPST ..o 244, See Floating Point Stack
CPYO2TOFPSL.....oeie e e 244, See Floating Point Stack
CPYOZ2TOFPS2.....coeee e 244, See Floating Point Stack
CPYO2TOFPSS....cceeee e e 244, See Floating Point Stack
CPYOZTOFPSA.....c e e 244, See Floating Point Stack
CPYO2TOFPST ..o e 244, See Floating Point Stack
CPYOSTOFPSL....ce e e 244, See Floating Point Stack
CPYOSTOFPS2.....cccceie e e 244, See Floating Point Stack
CPYOSTOFPST .. e 244, See Floating Point Stack
CPYOSTOFPSL....coiii e e 244, See Floating Point Stack
CPYOSTOFPSS... e e 244, See Floating Point Stack
CPYOBTOFPS2......oeicieei et 244, See Floating Point Stack

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Reference List — System Routines

631

CPYOBTOFPST .. e 244
CPYSTACK i e ————— 243
CPYTOLFPSL ... 245
CPYTOLFPSLO .. e 245
CPYTOLFPSIL oo e e 245
CPYTOLFPS2 ..o 245
CPYTOLFPS .. 245
CPYTOLFEPSA ... 245
CPYTOLFPSS .. 245
CPYTOLFEPSE ... 245
L0 o)V o i I S 245
CPYTOLEPSE ... e 245
CPYTOLFPSY ... 245
CPYTOLFPST .. e e 245
CPYTOZFPSL ... 245
CPYTOZEPS2 ... e 245
CPYTOZEPSS .. 245
CPYTOZEPSA ... e 245
CPYTOZEPSS .. 245
CPYTOZEPSE ... 245
CPYTOZEPST ..o 245
CPYTOZEPSE ... 245
CPYTOZFEPST e e e 245
CPYTOBFEPSL ... 245
CPYTOBFEPS2 ... 245
L0 o)V 0 10 o) S 245
CPYTOAFP ST e eane 245
L0 o)V 0 15T) P 245
CPYTOBFPS2 ... e 245
CPYTOBFPS3 ... e 245
CPYTOBFP ST oo aeeane 245
CPYTOFPSL .. 247
CPYTOFPS2Z ..o 248
CPYTOFP S e 249
(00 o] =) PR 246
CPYTOSLACK ... 250
CreatEOEQU...cuu e
CrEALEAPPVAL ..ttt
(O == 1 (=1 O I] PP PP PP UPPPPRRPP

. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack
. See Floating Point Stack

494 See Memory
495, See Memory
496 See Memory

TI-83 Plus Developer Guide

Initial Release October 29, 1999

632 Reference List — System Routines

CrRALECPIX ..ttt a e e e e e e e e e e e e e aaeas 497| See Memory
CrealEEQU ..o 498 See Memory
CFRALEPAIN ... ittt e e et et e ettt ettt e et e e e e e e e e e e e eeaeaeaaaaeaans 499| See Memory
(O 1T | (=] o 500 See Memory
(01 (=T 1 (<] o (o To F TR 501 See Memory
(011 oT= 1] o (0] 8 o (o o [N 502. See Memory
CrEALEREAI et a e e e e e e as 503 See Memory
CrEAtERLIST ... e ——— 504 See Memory
CrEAERIMAL.ceeeeiiiee e e 505 See Memory
(@R =T 1= 1 Lo 506 See Memory
(O 20T o | o TP P PP P PP PP PP PP PPPPP PPN 413. See Math
(035 o Lo o] AP 414, See Math
(08010 [T= 1P PPPPPT T 415. See Math
L35 | o N 416. See Math
LR = 1 D G TSP SRR 417, See Math
L I 0 o TP 418. See Math
LW o = SO 419, See Math
CUISOTOT Lttt 204. See Edit
LO1T] €57] (@ o [PPSR 205, See Edit
CXIOOLY L tttttttttitteeee ettt ettt ettt et ettt ee et e e e e eeaaeaaaaaaaaeaaaaeeaaaaaeaeaesaasaaasaaaaaaaanannnnnnnnns 420. See Math
L 4 (0 PRSP 421. See Math
D
D= U IR = SR 274. See Graphing and Drawing
DarkPNt. ... 276. See Graphing and Drawing
DALASIZE ..o i e a e aaaaaaar—— 507 See Memory
DAtASIZEA ... 508 See Memory
DEallOCFPS e 509. See Memory
DRAIIOCFP S ... 510. See Memory
=Tl @ 1 o PRSI 422. See Math
DEILISTEL ...t e ettt e e e e e e e e e e aar e e e e e e e e e arnanas 356, See List
DEIMEIM .. et e e 511/ See Memory
1T L 575/ See Statistics
DEIVAT ... e 513/ See Memory
DEIVAIATIC. ..o e 514 See Memory
DEIVAINOAICot e e e e e e e e et e e e e e e eeeeaaeees 515. See Memory
DISADIEADT. ... 583, See Utility
ISPttt ittt e ———————— 278, See Graphing and Drawing
DISPDONE ...t 168 See Display
D11 o] =1 @] P UURPUPPRURTRN 206, See Edit

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List — System Routines 633

DISPHL <.t r e e e e eeed 169! See Display
DiSPlaYIMAQEo 170! See Display
DISPOPILA ... eea 172 See Display
DIVHLBYZLO ..ttt e e e et s e e e e e e e e e e et e e e aaaeeeaaaes 334, See Interrupt
DIVHLBYA . .o 335, See Interrupt
] = Y O] (o SRR 279. See Graphing and Drawing
DraWCmdcoo oot 281. See Graphing and Drawing
DrawReECtBOIUENcoovvviiiiiiii e e e 282. See Graphing and Drawing
DrawRecCtBOorderCIear ... 283. See Graphing and Drawing
DTOR 423, See Math
E
EdItPIOg ..o 516/ See Memory
ENADICADA ..o e ——————— 584. See Utility
ENOUGNIMEIM..... e 517 See Memory
L@ o N[=T | U 585. See Utility
EQU_Or_NEWEQUoeii e 586. See Utility
[= 1Y = S SRRRPPIY 173, See Display
EraseReCtBOIrderoooviiiiiiiiiie e 284, See Graphing and Drawing
7 08T 1= o | RPN 209. See Error
[=Tz To [U= R 210. See Error
LT (- 1P 211, See Error
EITD _OP L0 ittt e et e e e aaae 212, See Error
O T A I PP 213/ See Error
EITD_OPLINOL_ R .ot e et e e e et e e e e e e aeae 214, See Error
ErD_OPLNOIPOS. ..ot e 215/ See Error
ErrD_OPLINOPOSINT. ...ttt a e e e e eeaas 216. See Error
= = W 1Y 01 217, See Error
[41T 0 £ [o PSSR 218. See Error
ErrDIMMISMALCH .o 219. See Error
EFTDIVBYO ... et e e e e e 220. See Error
9o o = 1 o PP 221. See Error
BT INCIEIMENT ... e e e et et e e e s e et e et e e eaa e 222, See Error
17V T PP 223. See Error
(=T = 4] P 224, See Error
o I 0] 19 1 0 R 225, See Error
ETTIMEBIMOIY ..o ettt e et e e e e e e nn s 226. See Error
N\ () o T == | 227. See Error
EFNONREAI ... 228. See Error
[\ Lo =1 0T 10 T | 11, =T o 229. See Error

TI-83 Plus Developer Guide Initial Release October 29, 1999

634 Reference List — System Routines

EFTOVEITIOW ..t e e e e e 230. See Error
ErrSIgNCRANGgE ... —————— 231, See Error
ErrSINQUIAIMAL ... 232/ See Error
] = | F OO OT TR PSUPPPPPPPPIN 233, See Error
0 = U1 [0 PP 234, See Error
)7/ 1= G 235. See Error
I o] 8 0T 1 1 = | 236. See Error
ErrUNdefiNed.......ooovviiiiiiiiii 237. See Error
L 0) U UPPPPTR PPN 424, See Math
EXCNO .. 518/ See Memory
L o PP SPPPPT PP 519, See Memory
Ol e 1= RO 425. See Math
F
= (o (0] 4= Y PP 426. See Math
11| = T o PP 285. See Graphing and Drawing
FIlIRECIPALIEIN ..o 287. See Graphing and Drawing
FINA_Parse FOMMUIA..........oooiiiii i e e e e e e e eeeaes 357. See List
FINAAIPNADIN L. 520. See Memory
T aTo AN o] aF= U o USSP 522. See Memory
106 VY o] o TP PP P PP PP PP P PPPPPPPPPPPPI 524 See Memory
T aT0 AN o] o] o PSSP 526, See Memory
FINAAPPNUMPAGES ...ttt 525, See Memory
(1T VAN o] o1 1 o USRI 527 See Memory
IO Sy M. et a e e 528| See Memory
FIVEEXEC oottt e e aaaees 561. See Parser
FIXTEMPCNT ettt 530. See Memory
FIASNTORAM ... e e e e e e e e e e e e eeaens 531. See Memory
0 Fo=] T]| Ko =TT o U 573. See Screen
FOIMBASEoviiiiiii it e e e e e e e e e e e e e et e e e e eaeaeeeeens 174, See Display
FOrMDCPIX .ottt 176 See Display
FOIMEREAL.... ..o e et e e e e e e e e e aaaeen, 178 See Display
FOIMREALttt e e e e eeeeeeeead 179 See Display
FOUMEXEC ..ottt e e e e eaa s 563/ See Parser
FPAAA e e e e e e e e e e aaaane 427. See Math
I PRSPPI 428. See Math
e Y S UUSUPPPPPRRNS 429. See Math
e =T o | PSP 430. See Math
FP SQUAIE....c et e e 431, See Math
U | o PP 432. See Math

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List — System Routines 635

= T3P 433, See Math
G
GIBASEVET ...t 587. See Utility
(7] (O3] O PP T TSP PRRPPTTTIN 346. See Keyboard
LT (= YRR 349, See Keyboard
L= 1 I 10T] o P 358/ See List
GEIMTOOP ... e e e e e e e e e e e e aa s, 484, See Matrix
(=Y i 10 I =1 o SRR 588. See Utility
(€] =10 {1 [SRRSO 289, See Graphing and Drawing
GIBUICDY etttiiiee ettt e e e e e e e e e e eeeenene 290, See Graphing and Drawing
(€ 0] 0[O | o UURPPPRTTRN 291, See Graphing and Drawing
H
L | T =T TP 434. See Math
[[0 74 @4 1 1T PP 292. See Graphing and Drawing
L T == 435, See Math
IBOUNGS... .o e e e e 293, See Graphing and Drawing
IBOUNASFUIL.....ooiiiiieeeeee e 294. See Graphing and Drawing
] = P 295,/ See Graphing and Drawing
[Tod IS 6] = PN 359| See List
L EY= T 1 Y 361 See List
INSEITMEBIM ... e e e e e e e n e e e 532/ See Memory
0 PP RPSSPPPPRRRN 436, See Math
1] (| PRSPPI 437, See Math
INVEMA ... e 297/ See Graphing and Drawing
INVEIMTRECT ... 298. See Graphing and Drawing
INVOP LS L. et e e e e e e e e e e e aarare 438. See Math
INVOP LS C ..o e 439, See Math
INVOP 2SS . et e e e e e e e e e e eaaaaae 440. See Math
IV SUD et e e e et e e e a e aaaa 441, See Math
(@151 SRS 299. See Graphing and Drawing
[P OINT. .. 300. See Graphing and Drawing
J
L o PP 238, See Error
N1t o 1 o 239/ See Error
| o (o1 4o | N[0T o - PP 589. See Utility
JFOrCeGraphKeYo 590! See Utility

TI-83 Plus Developer Guide Initial Release October 29, 1999

636 Reference List — System Routines

JFOrceGraphiNOKEYccooiiiiiiiiii e 591, See Utility
K
(=Y 0151 T PP 207, See Edit
L
LINECMA ... 302. See Graphing and Drawing
X 442, See Math
LOBA_SFONL ... 181 See Display
0T Vo [0] T 1 == To =T o [F PP 534. See Memory
LOAADEINUPAJEU.uuiiiiiiiiiiiiiiiiieeieee ettt ettt ettt eas 535, See Memory
(0T To L o=\ 1 (=1 o [PPSR 180, See Display
[0 s) PP PP TP RRPPPPPPPPTN 443, See Math
M
1= PSPPI 444, See Math
MM CNK <. e e e 536, See Memory
Y LT 0 L =T T SRR 592. See Utility
LT 0 BT PRSPPI 593. See Utility
1Y PP 445, See Math
YT 3 S UURUPUPPRRR 446. See Math
IMIOVLOBttt e e e e e e e e e e e et e e e e e e e e e e e e aa e aaaeaeeeaaranns 594, See Utility
1Yo 1Y 2 PSPPSR 594. See Utility
Y101V TSRS 594, See Utility
1Yo 1Y 2 PP 594 See Utility
IMIOVOB... ..ttt e e e e e e e et e ettt e e e e e et e e e e a b aaaaaaaeeaanns 594, See Utility
MOVOOPILOPZ.... e e e et e e e e e e e ennreeaan) 595 See Utility
MOVOOPZ2CD et e e e e e e e e 596. See Utility
MOVOTOOPL ...t e e e e et e e e et e e e e e e e e e eenneenaan) 597 See Utility
MOVOTOOPZ ...t e e e et e e e e e e e e e e e e ettt e eeeeaeeeaesseeannn, 598 See Utility
MOVETOPL ...ttt e e e e e et e e e e b e e e e e e eeeennnnes 599. See Utility
@)
ONEVAT ..t 576. See Statistics
OPLEXOP2 ...ttt e et et et e ee et e et eaeaaeaeaaans 600. See Utility
(O] (@] = TP 600. See Utility
OPLEXOPA ...ttt ettt et e ettt et e ettt e e e e e aaaaeaaaaaaaeeaaaaaaaaaaaaaaaaaaaaaaaaaaaans 600. See Utility
OP LEXOPS L. e e 600. See Utility
OPLEXOPGuviiiiiiiiiiiiieieiieeeteeeee ettt ettt e et e e et e e e eetetaetaaans 600. See Utility
OP LEXPTODEC ..utttiiiii et e e e e e e e e e e e e e e e st s e e e e eaeaeeaenns 447, See Math
(O] BT < (O TSP TUPUPTTRPPR 448, See Math

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List — System Routines

637

OP1ToOP2
OP1ToOP3
OP1ToOP4
OP1ToOP5
OP1ToOP6
OP2EXOP4
OP2ExOP5
OP2EXxOP6

OP2SEEB0 ...t e s

OP2ToOP1
OP2ToOP3
OP2ToOP4
OP2ToOP5
OP2ToOP6

OP3ToOP1
OP3ToOP2
OP3ToOP4
OP3ToOP5

OP4ToOP1
OP4ToOP2
OP4ToOP3
OP4ToOP5

| See Math
| See Math
| See Math
| See Math
. See Utility
. See Utility
. See Utility
. See Utility
. See Utility
. See Utility
. See Utility
. See Utility
| See Math
| See Math
| See Math
| See Math
| See Math
| See Math
. See Math
| See Math
. See Math
. See Utility
. See Utility
. See Utility
. See Utility
. See Utility
| See Math
| See Math
| See Math
. See Utility
. See Utility
. See Utility
. See Utility
| See Math
| See Math
. See Utility
. See Utility
. See Utility
. See Utility

TI-83 Plus Developer Guide

Initial Release October 29, 1999

638

Reference List — System Routines

OPATOOPE ...ttt e ettt e e e e e bbb e e e e e e e et b e e e e e e e e aanne 601. See Utility
(O] Y (@] = TP 600. See Utility
OPS5SEI0 ...ttt e et e e et e e e e aaae 448, See Math
(0]S 10T T = U 601. See Utility
OPBSTOOP2 ..ttt e e e e et e e e e e e e et b e e e e e e e e e anne 601. See Utility
(O] S 10T] = TP 601. See Utility
OPBSTOOPA ...ttt e e e e et e e e e e e et b e e e e e e e 601. See Utility
(O] S 101 @ 1 = TP 601. See Utility
OPBTOOPL ...ttt e e e e e e bbbt e e e e e e e e abbb e e e e e e e e aanne 601. See Utility
OPBTOOP2 ...ttt ettt ettt ettt ettt e e e e e e e e e e e e aaaeaeaeeaeaaeaaaaaaaaaaaaaaaaaaaanns 601. See Utility
OPBTOOPS ...t e e et e e e e e e e e e 601. See Utility
L@ 11101011 T o USRI 182, See Display
P
PageaGeL.... .o 537, See Memory
P aISEIND oot 565/ See Parser
PDSPGIPN .. 304. See Graphing and Drawing
PIXEITESE .. e e 305, See Graphing and Drawing
e 1 3 PSPPSR 451, See Math
POINTCMA ..o 306, See Graphing and Drawing
POINTON ... et 308. See Graphing and Drawing
POPOPL .. 251. See Floating Point Stack
POPOPS .. 251. See Floating Point Stack
POPOPS L. 251. See Floating Point Stack
POPREAI ... 252, See Floating Point Stack
POPREAIOLoiiiiiii e e e e 253. See Floating Point Stack
POPREAIOZ ... 253./ See Floating Point Stack
POPREAIOS ... e e 253. See Floating Point Stack
POPREAIOA 253./ See Floating Point Stack
POPREAIOSouiiiiii e 253. See Floating Point Stack
POPREAIOG ... 253. See Floating Point Stack
(Lo AN o 10 | o | SR PPPPPUPRPPR 602. See Utility
(0] o U SPPSPP 452, See Math
PUSNOPL ...t e e e e e eeeaaeees 254, See Floating Point Stack
PUSNOP 3 L. e 254, See Floating Point Stack
PUSNOPS ... e e e e e eeaaaees 254, See Floating Point Stack
PUSNREALo 255./ See Floating Point Stack
PUShREAIOI..... .. 256. See Floating Point Stack
PUSNREAIOZ..... .ot 256. See Floating Point Stack
PUShREAIOS....... e 256. See Floating Point Stack

TI-83 Plus Developer Guide

Initial Release October 29, 1999

Reference List — System Routines 639

PUSNREAIOA...... ..o 256. See Floating Point Stack
PUSNREAIOS.o e e 256. See Floating Point Stack
PUSNREAIOB. ... 256. See Floating Point Stack
U PP 183, See Display
PULMAD <. e e 184, See Display
PULP S e aa e 185. See Display
PULS e 187. See Display
PULTOKSIIING ..o e e e e e e e e e e eaaaaaaan, 189, See Display
U 1 o] PSPPI 363. See List
PULTOMEL ...ttt e e e e e e e eeee 485, See Matrix
R
= 1o | o USSP 453, See Math
L= 10 (oo PRSPPI 454, See Math
o IS = - 1 577, See Statistics
o Y 1 USRS 603. See Utility
RCIGDB2Z ...t 538 See Memory
e | N PSSP 539/ See Memory
RCISYSTOK ..o 567. See Parser
RCIVAISYIM ot e e e e e e et e e e e e e eeeaaeees 540 See Memory
RO X e e e ettt e e e e e e ee s 541, See Memory
o N P 542, See Memory
REC LS BY L. .. e 339. See IO
RECLSIBYLENC ..ot et e e et e e e e e et e e e e e eaa e 340/ See IO
RECABYLEIO ...ttt e e e e et e e e e e e e e e e nnn 341. See 10
REAIMMAL ..o e e e e e e e e et a e e e e e e eeeeens 543 See Memory
REGIAPN .. 309. See Graphing and Drawing
REIOAJAPPENIIYVECS ... a e 604. See Utility
RESIOMEDISP ..ttt 190, See Display
V=T T PP 455. See Math
0 [T =T o S USEPPPR 456. See Math
RN X e 457, See Math
0 11 Lo USSP 458. See Math
RTOD 459, See Math
G 1] PRSPPI 460, See Math
RUNINAICOTT ... e e et e e e e e e e e e eeeeens 191/ See Display
RUNINAICON ..ottt eee 192 See Display

TI-83 Plus Developer Guide Initial Release October 29, 1999

640 Reference List — System Routines

S
SAVEDISP . ¢ttt ettt 193/ See Display
Y= a0 VN = (PP 342. See 10
SELAIIPIOTS. ... 310. See Graphing and Drawing
SEIFUNCM oo 311,/ See Graphing and Drawing
SEEINOIM_VAIS ...ttt et e e e e e aaaes 194, See Display
SEIPAINM ... 312/ See Graphing and Drawing
SEEPOIM e 313. See Graphing and Drawing
SEESEOM .ot 314, See Graphing and Drawing
SetThIGraphDrawuuuiiiiiiiiiiiiiiiieeeeee e 315. See Graphing and Drawing
SEIUPPAGEAPTI ... e 544, See Memory
Y] 0,0, O | o PP 605, See Utility
SEEXXKOP 2. ..ttt ettt ettt a e aaaaaaaaaaas 606. See Utility
SEEXXXXOPZ et 607! See Utility
] o] o) A = USRS 195/ See Display
S PP 461, See Math
SINCOSRAU ...ttt ettt e e et e aaaaaaaaaaaaaaaaaaaas 462, See Math
1Y 463, See Math
SINHCOSH ...ttt e et e e et e et et e et e et e e et e e aaaaaaaaaaaaaaaann 464, See Math
SOROOT ..t e e e e r s 465. See Math
SrchVLStDN, SIChVLSIUPD ...uniiecce e 545, See Memory
SSUINGLENGIN ...t e e 196, See Display
SIMALE e e 546/ See Memory
SEOANIS e et et ear b e e e e e e e eeanare 547, See Memory
SEOGDB2Z.... et 548 See Memory
L) (o] TP PPTPP 549. See Memory
Y (0 10 1 1= PRSP 550/ See Memory
] (0] 552, See Memory
1S (0] = o o USRS 608 See Utility
Y (015 VST e | 553 See Memory
0 o) PPN 554. See Memory
) (o 1 I =] = L PRSPPI 555/ See Memory
0 0) PP TRRPPPRRPIN 556. See Memory
] (0) 557. See Memory
Y1 (O] o)V PP PP T RPPPPRTIY 609 See Utility
S 1 =T o | 1 o PP 610. See Utility

TI-83 Plus Developer Guide Initial Release October 29, 1999

Reference List — System Routines 641

T
1= 1 TP UPPPRTR 466, See Math
TANH e e e et e aaas 467, See Math
TANLNF e 316. See Graphing and Drawing
1= 0 TP 468, See Math
I =3 2= 1\ =g = SRR 469. See Math
TRIEEEXEC. ..ot et e e e e e e e 568. See Parser
I 1S 470, See Math
I 1S o £ TSP 471, See Math
BN = 11 01U PRSP 472, See Math
B 101 = (PSS 473. See Math
I (81 o R UPPPRT 474, See Math
U
UCLINES. ..ot e e e e e e e e e eanaaees 317 See Graphing and Drawing
UNLINECMA ...ttt 318 See Graphing and Drawing
O L@ = oS P 570. See Parser
\%
VEIMCIMIA. ...ttt e e e e e e e e e e e e e e e e e e 319. See Graphing and Drawing
VPULMAD ..t e e e e e 197. See Display
VP ULS . et 198, See Display
VPULSN L. e e e e e r e e e e e e e e e e e a e 200, See Display
VIOWHLDE. ... e 320! See Graphing and Drawing
X
IOl e ————————— 321. See Graphing and Drawing
XIEOT. s 322, See Graphing and Drawing
D= o = PR 475, See Math
XROOLY ettt e e ettt e e ettt e e e e e et e e e e et e e e eeba e aaeae 476. See Math
Y
YOl e ————— 323. See Graphing and Drawing
0= U T U PPPPRPTRUPPPIN 477. See Math
28 0) PSP 478, See Math
Z
ZEIOLOD ... e e e et eea e aeae 479. See Math
A=Y (1@ L = P 480, See Math
ZEIOOP L .. et e e e aa e 481. See Math
A=Y (1@ 1 481. See Math

TI-83 Plus Developer Guide Initial Release October 29, 1999

642 Reference List — System Routines

ZBIOOP S e e e e e e e aaae 481. See Math
ZMDECM Loeeiiiiii it 324/ See Graphing and Drawing
ZIMBIE. s 325, See Graphing and Drawing
4 12101 S 326. See Graphing and Drawing
ZIMPIEVY ..ttt e e e e e e e e e eennes 327. See Graphing and Drawing
ZMSGUAKIE ..eeiiii e e e e e e e e e e e e e et e e e e e e e e e eeeeeeseneaaaas 328/ See Graphing and Drawing
ZIMSEALS .ovveeiiiie e e e e e e e e e e e ennnes 329. See Graphing and Drawing
4 12 1 1 o USSP 330, See Graphing and Drawing
ZIMUST ettt e e e 331, See Graphing and Drawing
ZooDefault ... 332. See Graphing and Drawing

TI-83 Plus Developer Guide Initial Release October 29, 1999

	Table of Contents
	Table of Contents (p 1 of 17)
	Figures
	Tables

	Introduction
	TI.83 PLUS DEVELOPER GUIDE
	Conventions Used in this Guide
	Purpose of this Guide
	Structure of this Guide

	TI.83 Plus Specific Information
	ARCHITECTURE
	HARDWARE LAYER
	Z80 CPU and Memory
	Z80 RAM Structure
	System RAM
	User RAM
	Temporary RAM
	Floating Point Stack
	Free RAM
	Operator Stack
	Symbol Table
	Hardware Stack

	Flash ROM Structure
	Boot (Code) Area
	Certification Area
	Operating System (OS) Area
	Certificate List Area
	User APPS (Calculator Software Applications)/Data Area
	Swap Area/User APPS/Data Area

	System Development Environment
	System Routines
	RST Routines
	System RAM Areas
	User RAM
	Symbol Table Structure
	Floating Point Stack (FPS)

	DRIVERS LAYER
	Keyboard
	Display
	Displaying Using System Routines
	Formatting Numeric Values for Display
	Modifying Display Format Settings
	Writing Directly to the Display Driver
	Contrast Control
	Split Screen Modes

	Graphing and Drawing —
	Drawing
	Graphing
	Graphing and Drawing Utility Routines
	Drawing Routine Specifics
	Graphing Routine Specifics

	Run (Busy) Indicator
	APD™ (Automatic Power Down™)
	Link Port

	TOOLS
	UTILITIES LAYER
	Error Handlers
	Nested Error Handlers
	Utility Routines
	Floating-Point Math
	Miscellaneous Math Functions
	Complex Math
	Other Math Functions
	Function Evaluation
	Temporary Variables

	Working with TI Language Localization Applications
	Entering and Exiting an Application Properly
	Stand-alone
	Stand-alone with Put Away Notification

	Application Development Process
	PROGRAMMING LAYER
	Programs
	TI-BASIC Programs
	ASM Programs
	Applications
	ASM versus Applications

	DEVELOPMENT SYSTEM
	Using the Simulator System — Requirements for Getting Started
	Creating an Application for Debugging — One-Page and Multi- Page Apps
	A Brief Overview of Certificates and Application Signing
	Creating Applications that Fit On One Page
	The Hello Application

	Creating a Multiple Page Application
	Branch Table Entries
	Branch Table Placement
	Branch Table Equate File
	Making Off-Page Calls and Jumps

	CREATING
	ZILOG DEVELOPER STUDIO PROJECT
	Creating the Project
	Adding Files to the Project
	Project Settings

	Building the Application
	Loading the Application into the Simulator
	Debugging the Application
	Preparing an Application for Site Testing
	Signing the Application
	Downloading the App
	Preparing for Public Release

	Development Tools
	DEVELOPMENT ARCHITECTURE
	Z80 DEVELOPMENT SYSTEM
	INSTALLATION
	TI SOFTWARE SIMULATOR
	DEBUGGER
	Introduction
	Installation
	Getting Started
	Breakpoints
	Trace Options
	CPU View Window
	Disassembly View Window
	Flash View Window
	RAM View Window
	Memory Map Window
	Calculator Simulator Window
	Trace Log Window
	Loading Applications, Operating System, and RAM Files
	Terminating a Session
	Support in Writing Applications

	GLOSSARY
	Appendix A System Routines
	System Routines — Display
	Bit_VertSplit
	CheckSplitFlag
	ClearRow
	ClrLCD
	ClrLCDFull
	ClrOP2S
	ClrScrn
	ClrScrnFull
	ClrTxtShd
	DispDone
	DispHL
	DisplayImage
	DispOP1A
	EraseEOL
	FormBase
	FormDCplx
	FormEReal
	FormReal
	LoadPattern
	Load_SFont
	OutputExpr
	PutC
	PutMap
	PutPS
	PutS
	PutTokString
	RestoreDisp
	RunIndicOff
	RunIndicOn
	SaveDisp
	SetNorm_Vals
	SFont_Len
	SStringLength
	VPutMap
	VPutS
	VPutSN

	System Routines — Edit
	CloseEditBufNoR
	CursorOff
	CursorOn
	DispEOL
	KeyToString

	System Routines — Error
	ErrArgument
	ErrBadGuess
	ErrBreak
	ErrD_OP1_0
	ErrD_OP1_LE_0
	ErrD_OP1Not_R
	ErrD_OP1NotPos
	ErrD_OP1NotPosInt
	ErrDataType
	ErrDimension
	ErrDimMismatch
	ErrDivBy0
	ErrDomain
	ErrIncrement
	ErrInvalid
	ErrIterations
	ErrLinkXmit
	ErrMemory
	ErrNon_Real
	ErrNonReal
	ErrNotEnoughMem
	ErrOverflow
	ErrSignChange
	ErrSingularMat
	ErrStat
	ErrStatPlot
	ErrSyntax
	ErrTolTooSmall
	ErrUndefined
	JError
	JErrorNo

	System Routines — Floating Point Stack
	AllocFPS
	AllocFPS1
	CpyStack
	CpyO1ToFPST, CpyO1ToFPS1, CpyO1ToFPS2, CpyO1ToFPS3, CpyO1ToFPS4, CpyO1ToFPS5, CpyO1ToFPS6, CpyO1ToFPS7, CpyO2ToFPST, CpyO2ToFPS1, CpyO2ToFPS2, CpyO2ToFPS3, CpyO2ToFPS4, CpyO3ToFPST, CpyO3ToFPS1, CpyO3ToFPS2, CpyO5ToFPS1, CpyO5ToFPS3, CpyO6ToFPST, CpyO6To
	CpyTo1FPST, CpyTo1FPS1, CpyTo1FPS2, CpyTo1FPS3, CpyTo1FPS4, CpyTo1FPS5, CpyTo1FPS6, CpyTo1FPS7, CpyTo1FPS8, CpyTo1FPS9, CpyTo1FPS10, CpyTo1FPS11, CpyTo2FPST, CpyTo2FPS1, CpyTo2FPS2, CpyTo2FPS3, CpyTo2FPS4, CpyTo2FPS5, CpyTo2FPS6, CpyTo2FPS7, CpyTo2FPS8,
	CpyToFPST
	CpyToFPS1
	CpyToFPS2
	CpyToFPS3
	CpyToStack
	PopOP1, PopOP3, PopOP5
	PopReal
	PopRealO1, PopRealO2, PopRealO3, PopRealO4, PopRealO5, PopRealO6
	PushOP1, PushOP3, PushOP5
	PushReal
	PushRealO1, PushRealO2, PushRealO3, PushRealO4, PushRealO5, PushRealO6

	System Routines — Graphing and Drawing
	AllEq
	BufClr
	BufCpy
	CircCmd
	ClearRect
	CLine
	CLineS
	ClrGraphRef
	CPoint
	CPointS
	DarkLine
	DarkPnt
	Disp
	DrawCirc2
	DrawCmd
	DrawRectBorder
	DrawRectBorderClear
	EraseRectBorder
	FillRect
	FillRectPattern
	GrBufClr
	GrBufCpy
	GrphCirc
	HorizCmd
	IBounds
	IBoundsFull
	ILine
	InvCmd
	InvertRect
	IOffset
	IPoint
	LineCmd
	PDspGrph
	PixelTest
	PointCmd
	PointOn
	Regraph
	SetAllPlots
	SetFuncM
	SetParM
	SetPolM
	SetSeqM
	SetTblGraphDraw
	TanLnF
	UCLineS
	UnLineCmd
	VertCmd
	VtoWHLDE
	XftoI
	Xitof
	YftoI
	ZmDecml
	ZmFit
	ZmInt
	ZmPrev
	ZmSquare
	ZmStats
	ZmTrig
	ZmUsr
	ZooDefault

	System Routines — Interrupt
	DivHLBy10
	DivHLByA

	System Routines — IO
	AppGetCalc
	AppGetCbl
	Rec1stByte
	Rec1stByteNC
	RecAByteIO
	SendAByte

	System Routines — Keyboard
	ApdSetup
	CanAlphIns
	GetCSC
	GetKey

	System Routines — List
	AdrLEle
	AdrMEle
	ConvDim
	ConvLcToLr
	ConvLrToLc
	DelListEl
	Find_Parse_Formula
	GetLToOP1
	IncLstSize
	InsertList
	PutToL

	System Routines — Math
	AbsO1O2Cp
	AbsO1PAbsO2
	ACos
	ACosH
	ACosRad
	Angle
	ASin
	ASinH
	ASinRad
	ATan
	ATan2
	ATan2Rad
	ATanH
	ATanRad
	CAbs
	CAdd
	CDiv
	CDivByReal
	CEtoX
	CFrac
	CIntgr
	CkInt
	CkOdd
	CkOP1C0
	CkOP1Cplx
	CkOP1FP0
	CkOP1Pos
	CkOP1Real
	CkOP2FP0
	CkOP2Pos
	CkOP2Real
	CkPosInt
	CkValidNum
	CLN
	CLog
	ClrLp
	ClrOP1S
	CMltByReal
	CMult
	Conj
	COP1Set0
	Cos
	CosH
	CpOP1OP2
	CpOP4OP3
	CRecip
	CSqRoot
	CSquare
	CSub
	CTenX
	CTrunc
	Cube
	CXrootY
	CYtoX
	DecO1Exp
	DToR
	EToX
	ExpToHex
	Factorial
	FPAdd
	FPDiv
	FPMult
	FPRecip
	FPSquare
	FPSub
	Frac
	HLTimes9
	HTimesL
	Int
	Intgr
	InvOP1S
	InvOP1SC
	InvOP2S
	InvSub
	LnX
	LogX
	Max
	Min
	Minus1
	OP1ExpToDec
	OP1Set0, OP1Set1, OP1Set2, OP1Set3, OP1Set4, OP2Set0, OP2Set1, OP2Set2, OP2Set3, OP2Set4, OP2Set5, OP2Set60, OP3Set0, OP3Set1, OP3Set2, OP4Set0, OP4Set1, OP5Set0
	OP2Set8
	OP2SetA
	Plus1
	PtoR
	RandInit
	Random
	RName
	RndGuard
	RnFx
	Round
	RToD
	RToP
	Sin
	SinCosRad
	SinH
	SinHCosH
	SqRoot
	Tan
	TanH
	TenX
	ThetaName
	Times2
	TimesPt5
	TName
	ToFrac
	Trunc
	XName
	XRootY
	YName
	YToX
	Zero16D
	ZeroOP
	ZeroOP1, ZeroOP2, ZeroOP3

	System Routines — Matrix
	AdrMRow
	GetMToOP1
	PutToMat

	System Routines — Memory
	Arc_Unarc
	ChkFindSym
	CleanAll
	CloseProg
	CmpSyms
	Create0Equ
	CreateAppVar
	CreateCList
	CreateCplx
	CreateEqu
	CreatePair
	CreatePict
	CreateProg
	CreateProtProg
	CreateReal
	CreateRList
	CreateRMat
	CreateStrng
	DataSize
	DataSizeA
	DeallocFPS
	DeallocFPS1
	DelMem
	DelVar
	DelVarArc
	DelVarNoArc
	EditProg
	EnoughMem
	Exch9
	ExLp
	FindAlphaDn
	FindAlphaUp
	FindApp
	FindAppNumPages
	FindAppDn
	FindAppUp
	FindSym
	FixTempCnt
	FlashToRam
	InsertMem
	LoadCIndPaged
	LoadDEIndPaged
	MemChk
	PagedGet
	RclGDB2
	RclN
	RclVarSym
	RclX
	RclY
	RedimMat
	SetupPagedPtr
	SrchVLstDn, SrchVLstUp
	StMatEl
	StoAns
	StoGDB2
	StoN
	StoOther
	StoR
	StoSysTok
	StoT
	StoTheta
	StoX
	StoY

	System Routines — Parser
	BinOPExec
	FiveExec
	FourExec
	ParseInp
	RclSysTok
	ThreeExec
	UnOPExec

	System Routines — Screen
	ForceFullScreen

	System Routines — Statistics
	DelRes
	OneVar
	Rcl_StatVar

	System Routines — Utility
	AnsName
	ConvDim00
	CpHLDE
	DisableApd
	EnableApd
	EOP1NotReal
	Equ_or_NewEqu
	GetBaseVer
	GetTokLen
	JForceCmdNoChar
	JForceGraphKey
	JForceGraphNoKey
	MemClear
	MemSet
	Mov7B, Mov8B, Mov9B, Mov10B, Mov18B
	Mov9OP1OP2
	Mov9OP2Cp
	Mov9ToOP1
	Mov9ToOP2
	MovFrOP1
	OP1ExOP2, OP1ExOP3, OP1ExOP4, OP1ExOP5, OP1ExOP6, OP2ExOP4, OP2ExOP5, OP2ExOP6, OP5ExOP6
	OP1ToOP2, OP1ToOP3, OP1ToOP4, OP1ToOP5, OP1ToOP6, OP2ToOP1, OP2ToOP3, OP2ToOP4, OP2ToOP5, OP2ToOP6, OP3ToOP1, OP3ToOP2, OP3ToOP4, OP3ToOP5, OP4ToOP1, OP4ToOP2, OP4ToOP3, OP4ToOP5, OP4ToOP6, OP5ToOP1, OP5ToOP2, OP5ToOP3, OP5ToOP4, OP5ToOP6, OP6ToOP1, OP6T
	PosNo0Int
	RclAns
	ReloadAppEntryVecs
	SetXXOP1
	SetXXOP2
	SetXXXXOP2
	StoRand
	StrCopy
	StrLength

	System Routines — Miscellaneous
	ConvOP1

	Appendix B TI.83 Plus “Large” Character Fonts
	Appendix C TI.83 Plus “Small” Character Fonts
	Reference List — System Routines

