S T A N    I

 

 

 

 

 

By Rafael H. Padilla V.

 

DYSUP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference Manual

 

 

 

 

 

 

 

 

 

 

INTRODUCTION.

 

 

 

 

STAN-I is a program that performs analysis of the plane frames structures (only 2 dimensions). The contents of an input file are read and results are written to an output file.

 

 

 

COPYRIGHT AND DISCLAIMER

 

All the files of the STAN-I system are copyrighted ã by Rafael H. Padilla V.

 

Although every effort has been made to ensure the accuracy of this programs, DYSUP will not accept responsibility for any mistake, error or mispresentation in or as a result of the usage of this program.

 

            THE COPYRIGHT HOLDER PROVIDES THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENEREAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM.

 

 

INPUT GENERATION.

 

The user communicates with STAN-I through an input file. The input file is a text file consisting of a series of commands, they are executed sequentially. In general, any text editor in plaint text may be utilized to create the input file.

 

 

 

UNIT SYSTEM

 

The user is allowed to input data request in almost all commonly used engineering units systems including FPS, MKS and SI. In the input file, the user may change units as many times as required. Mix and match between length and force units from different unit systems are allowed. The rotations results in JOINT DISPLACEMENT are provided in radians. For all output, the units are clearly specified by the program.

 

 

COORDINATE SYSTEMS

 

STAN-I uses two types of coordinate systems to define the structure geometry and loading patterns. The GLOBAL coordinate system is an arbitrary coordinate system in plane, this is utilized to specify the overall geometry & loading pattern of the structure. A LOCAL coordinate system is associated with each member and is utilized in MEMBER END FORCE output or local load specification.

 

GLOBAL COORDINATE SYSTEM

 

This coordinate system is a rectangular coordinates system (X, Y) that follows the orthogonal right hand rule. This coordinate system may be used to define the joint locations and loading directions.

 

 

 

LOCAL COORDINATE SYSTEM

 

A local coordinate system is associated with each member. Each of these local orthogonal coordinate systems also follows the right hand rule.

 

 


 

INPUT INSTRUCTIONS

 

The program accept a command language for receive user instructions. Each of these commands are explain later, but first we should see some command formats:

 

a) Free-Format Input: All input to the program is in free-format style. Input data items should be separated by blank spaces or commas from the other input data items.

 

b) Commenting Input: For documentation of an Input file, the facility to provide comments is available. Comments can be included by providing an asterisk (*) mark as the first non-blank character in any line. The line with the comment is printed but not processed by the program.

 

c) Abbreviation: the user can input the commands in abbreviation format, the full word intended is given in the command description with the portion actually required (the abbreviation) underlined.

 

d) Listing Data: In some command descriptions, the word "list" is used to identify a list of joints, member or loading cases. The format of a list can be defined as follows:

 

list =                            i1, i2, i3...

            or                     i1 TO  i2

           

TO means all integers from the first (i1) to the second (i2) inclusive with increment from 1 by 1.

Example:

 

            1 4 6 TO 9 12 15         is the same list that 1,4,6,7,8,9,12,15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*** INPUT COMMANDS ***

==================

 

 

1.1 TITLE

 

General format:

 

STAN (any title)

 

Any input file has to start with the word STAN.

Any title = will be any string for identification of the analysis (this title is optional).

 

Example:

STAN EXAMPLE NO. 1

 

 

1.2 UNIT SPECIFICATION

 

General format:

 

UNIT { length-unit force-unit }

 

length-unit = any of this

            {

                        INCHES

                        FEET or FT

                        CM

                        METER

                        MMS

                        DME

                        KMS

            }

 

force-unit = any of this

            {

                        KIP

                        POUND

                        KG

                        MTON

                        NEWTON

                        KNS

                        MNS

                        DNS

            }

Note:

            DME denotes Decameters. MTON denotes metric Tons, MNS denotes mega Newton’s and DNS denotes decaNewtons. All other            units are self-explanatory.

 

The UNIT command can be repeated any number of times during an analysis.

 

Examples:

 

            UNITS METER MTON

            UNITS INCH

            UNITS KIPS FEET

            UNITS NEWTONS

 

The second and four examples show you that can set only one parameter if you want, the default units are METERS & MTON.

 

 

 

1.3 JOINT COORDINATES.

 

General format:

 

JOINT COORDINATES

   i1, x1, y1 (, i2, x2, y2)

 

i1 =                  The joint number for each one of the coordinates are provided. (Integer Number)

x1, y1 =           coordinates of the joint.

 

The following are used only if joint are to be automatic generated.

 

i2 =                  The second joint number to which the joint coordinates are generated.

x2, y2 =           coordinates of the joint.

 

The X and Y coordinates will be equally spaced between i1 and i2.

 

Examples:

 

            JOINT COORDINATES

               1  0.00  0.00

               2  9.00 0.00

               3  0.00 6.00    6 9.00 6.00

 

 

 

 

In this example X and Y coordinates of joint 3 to 6 will be generated with joints equally spaced from 3 to 6. in other words this are the joint coordinates of the structure:

 

1 0.00 0.00

2 9.00 0.00

3 0.00 6.00

4 3.00 6.00

5 6.00 6.00

6 9.00 6.00

 

 

 

1.4 MEMBER INCIDENCES.

 

General format:

 

MEMBER INCIDENCES

   i1, i2, i3 (,i4)

 

i1 =                  Member number for each one of incidences are provided.

i2 =                  Start joint number.

i3 =                  End joint number.

 

The following data are used for member generation only:

 

i4 =                  Second member to which members will be generated with increments of one for member number and joint number.

 

Examples:

 

            MEMBER INCIDENCES

               1 1 3

               2 2 6

               3 3 4 5

 

In this example the incidences for the members 4 and 5 are generated automatic, in other words this are the results of example:

 

1 1 3

2 2 6

3 3 4

4 4 5

5 5 6

 

 

 

1.5 MEMBER PROPERTIES.

 

General format:

 

MEMBER PROPERTIES

 member-list { section-type }

 

member-list = is a list of members, see Listing Data sections.

 

section-type = any of the following

            {

                        PRISMATIC general-section

                        PRISMATIC circular-section

                        PRISMATIC rectangular-section

                        TABLE file-name section-name

                        ISECTION I-shape-section

                        PIPE pipe-section

                        TUBE tube-section

            }

 

general-section = AX Cross-section-area IZ Moment-of-Inertia-around-local-z-axis (usually strong axis)

 

circular-section = YD Diameter-of-cross-section

 

rectangular-section = YD Depth-of-rect-section ZD Width-of-rec-section

 

file-name = is a ASCII file with a table of any section type, this file has three values, the first is a section-name, the second value is a Cross section area and the last value is a Moment of inertia around local z axis.

 

section-name = is a section denomination or name exactly equal to some of the first values in the file.

 

I-shape-section =  is a list of four values with this order Depth-of-the-section, Thickness-of-wed, Width-of-the-flange, and finally Thickness-of-flange.

 

pipe-section = OD Out-Diameter-of-pipe ID in-diameter-of-pipe

 

tube-section = DT Depth-of-tube WT Width-of-tube TH thickness-of-pipe.

 

 

 

 



Examples:

 

            UNITS CMS

            MEMBER PROPERTIES

            * GENERAL SECTION, ANY SHAPE

               1 2 PRISM AX 10.00 IZ 1000.00

            * CIRCULAR SECTION WITH DIAMETER OF 15 CMS

              3 4 PRISM YD 15.0

            * RECTANGULAR SECTION

              5    PRISM YD 10.0 ZD 6.00

            * WIDE FLANGE SECTION FROM THE DATA FILE "ST"

              6 TO 8 TABLE ST W12X22

            * I - SHAPED DEPTH 100 CM, WIDTH 25 CM, THICKNESS FLANGE 1/2"

            * AND THICKNESS OF WED 1/4"

              9 10 ISEC 100.0 0.60 25.00 1.27

            * PIPE

              11 PIPE ID 9.5 OD 10.00

            * TUBE 8"x4"x 3/16"

              12 TUBE DT 20.00 WT 10.00 TH 0.50

            * AN USER DEFINED SECTION FROM FILE "CHANNEL"! WITH NAME CH1

              13 TABLE CHANNEL CH1

 

 

This example has a lot of comments for be auto-explain by itself.

 

You can do your own tables for the most common section that you handle, for example if you want to have a table of channels like in the above example, you should write and file in some text editor and save it with the name "CHANNEL" for example some like this:

 

CH1 10 100

CH2 12 105

CH3 14 110

....

CHn nn nnn

 

In this file you have all section that you want, one for line, the first value is the section-name, the second value is the cross-section-area in square centimeters, and the last value is the moment-of-axis-in-the-strong-axis in cm4, (WARNING: always this values are in centimeters!)

 

 

 

 

 

 

Now you can use you new table like in the first example, next is show another example that use this new file who name is CHANNEL:

 

            MEMBER PROPERTIES

               1 2 TAB CHANNEL CH3

              3 TO 5 TAB CHANNEL CH1

 

 

1.6 CONSTANTS

 

General format

 

CONSTANTS

            E const-value MEMBER member-list

            E const-value ALL

            DENSITY const-value MEMBER member-list

            DENSITY const-value ALL

 

You can use any of the four combinations show or varies of this.

Here E specifies Young’s Modulus and DENSITY specifies weight density.

 

const-value = any of the next:

            {

                        STEEL

                        CONCRETE

                        Any user value

            }

 

Example 1:

 

            CONSTANTS

               E STEEL ALL

               DEN STEEL ALL

 

Example 2:

           

            CONSTANTS

              E 2.0E7 MEMBER 1 TO 4

              E 1.2E7 MEMBER 5 6

              E CONCRETE MEMBER 7 8

 

              DEN 1.0 MEMBER 1 TO 4

              DEN 0.55 MEMBER 5 6

              DEN CONCRETE MEMBER 7 8

 

Note : for default, STEEL is taking for parameters E and DENSITY in all member.

1.7 SUPPORTS

 

General format:

 

SUPPORTS

            joint-list { support-type }

 

support-type = any of the next

            {

                        PINNED

                        FIXED

                        FX

                        FY

                        MZ

            }

 

PINNED support is a support which has translational, but not rotational restraints. In other words, the support doesn’t have moment carrying capacity.

 

FIXED support has both translational and rotational restraints.

 

FX supports has only carrying capacity in X-direction, so this support has displacements in Y direction and rotation in Z-axis.

 

FY supports has only carrying capacity in Y-direction, so this support has displacements in X direction and  rotation in Z-axis.

 

MZ supports have carrying capacity for rotation, but no for translation.

 

Examples:

 

            SUPPORTS

               1 4 FIXED

               2 3 PINNED

 

 

 

 

 

 

 

 

 

 

 

1.8 LOADING SPECIFICATIONS

 

General format:

 

LOADING i1 ( any load title )

 

i1 = any unique integer number to identify the load case. This number can be not sequential with previous load number.

 

The LOADING command initiates a new load case. Under this heading, all different loads related to this loading number can be input. These different kinds of load are described below.

 

 

 

1.8.1 JOINT LOAD SPECIFICATION

 

General format:

 

            JOINT LOAD

               joint-list   { FX f1 FY f2 MZ f3  }

 

FX and FY specify a force in the corresponding global direction.

MZ specify a moment in the corresponding global direction.

 

f1, f2 and f3 are the values of the loads.

 

Example:

 

            JOINT LOAD

               1 4 FX 5.00

               2 TO 8 FX 2.0 FY -1.25

               9 MZ 0.80

 

NOTE: Joint numbers may be repeated where loads are meant to be additive in the joint.

 

 

 

 

 

 

 

 

 

 

1.8.2 MEMBER LOAD SPECIFICATION

 

General format:

 

            MEMBER LOAD

               member-list {

                                    UNI or UMOM direction-spec f1,f2,f3

                                    CON or CMOM        direction-spec f4, f5

                                   }

 

            direction-spec = {

                                                X

                                                Y

Z

                                                GX

                                                GY

GZ

PX

PY

                                    }

 

UNI or UMOM           Specifies a uniformly distributed load or moment with a value of  f1, at a distance of f2 from the start of the member to the start of the load, and a distance of f3 from the start of the member to the end of the load. The load is assumed to cover the full member length if f2 and f3 are omitted, and if f3 is omitted then the load is assumed since f2 distance until the end of the member.

 

CON or CMOM         Specifies a concentrate force or moment with a value of f4 applied at a distance of f5 from the start of the member. If is omitted f5 this value will set default to half-length of the member.

 

X & Y                          In the direction-spec specify the direction of the load in the local (member) x and y-axes.

 

GX & GY                    In the direction-spec specify the direction of the load in the global X and Y-axes.

 

PX & PY                     It’s the load along the projected length of the member in the corresponding global direction.

 

NOTE:

Member may be repeated where the loads in the member are meant to be additive. Z & GZ direction is only for CMOM & UMOM, and PX & PY are only for UNI load.

 

Example:

 

            MEMBER LOAD

               1 2 GX 1.00

               3 TO 5 GY -0.624

 

 

 

 


1.8.3 SELFWEIGHT LOAD SPECIFICATION

 

General format:

 

            SELFWEIGHT Y f1

 

 

This command is used if the self-weight of the structure is to be considered. The self-weight of every member is calculated and applied as a uniformly distributed member load.

 

Y represent the global direction in where the self weight acts, and even is Y-axes.

 

f1 = The factor to be used to multiply the self-weight.

 

 

 

1.9 END RUN SPECIFICATION

 

General format:

 

            FINISH

 

This command should be provided as the last input command. This terminates an input file and launch the analysis program for create the output file.

 

 

 

CREDITS

 

Special thanks to:

 Caspar Lugtmeier for technical support.

Jesus Galvan Urbina for beta-test.
Appendix A. EXAMPLES.

 

EX. 1:

 

FILE:  SCHOOL

 

LOAD 1:

            LIVE LOAD= 236.25 KG/M

 

LOAD 2:

            DEAD LOAD= 1,096.88 KG/M + SELFWEIGHT

 

UNIT:  METERS AND METRIC TONS

 

FIG:

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT FILE FOR EXAMPLE 1:

 

stan I: school

 

joint coor

1 0 0

2 9.95 0

3 0 2.23

4 4.975 4.09

5 9.95 2.23

 

mem inci

1 3 1

2 5 2

3 3 4

4 4 5

 

member propert

1 to 4 tab st w12x30

 

supports

1 2 pined

 

load 01 life load

memb load

3 4 unif gy -0.23625

 

load 02 dead load

selfweight y -1.0

member load

3 4 unif gy -1.09688

 

finish

 


 

 

 

 

ANALISIS RESULTS FOR EXAMPLE 1 :

 

 

 

       **************************************************

       *                                                *

       *          S T A N - I                           *

       *          Version 1.01a                         *

       *          Copyright (c) 2001 By                 *

       *              _                                 *

       *          DISENO & SUPERVICION, Inc.            *

       *                                                *

       **************************************************

 

 

  1. STAN I: SCHOOL

  2.

  3. JOINT COOR

  4. 1 0 0

  5. 2 9.95 0

  6. 3 0 2.23

  7. 4 4.975 4.09

  8. 5 9.95 2.23

  9.

 10. MEM INCI

 11. 1 3 1

 12. 2 5 2

 13. 3 3 4

 14. 4 4 5

 15.

 16. MEMBER PROPERT

 17. 1 TO 4 TAB ST W12X30

 18.

 19. SUPPORTS

 20. 1 2 PINED

 21.

 22. LOAD 01 LIFE LOAD

 23. MEMB LOAD

 24. 3 4 UNIF GY -0.23625

 25.

 26. LOAD 02 DEAD LOAD

 27. SELFWEIGHT Y -1.0

 28. MEMBER LOAD

 29. 3 4 UNIF GY -1.09688

 30.

 31. FINISH

 

 

     **********************************

     <<<   PRINT ANALISIS RESULTS   >>>

     **********************************

 

 

<<< LOAD NUMBER :   1 LIFE LOAD  >>>

*** JOINT DISPLACEMENT *** (UNITS CMS-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000       0.0007

     2       0.0000       0.0000      -0.0007

     3      -0.0875      -0.0024      -0.0001

     4       0.0000      -0.2473       0.0000

     5       0.0875      -0.0024       0.0001

 

*** SUPPORT REACTIONS *** (UNITS MTON-METER)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1        0.642        1.255        0.000

     2       -0.642        1.255        0.000

 

*** MEMBER END FORCES *** (UNITS MTON-METER)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      3      1.255     -0.642     -1.432

            1     -1.255      0.642     -0.000

 

     2      5      1.255      0.642      1.432

            2     -1.255     -0.642      0.000

 

     3      3      1.041      0.950      1.432

            4     -0.602      0.225      0.494

 

     4      4      0.602      0.225     -0.494

            5     -1.041      0.950     -1.432

 

 

 

<<< LOAD NUMBER :   2 DEAD LOAD  >>>

*** JOINT DISPLACEMENT *** (UNITS CMS-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000       0.0032

     2       0.0000       0.0000      -0.0032

     3      -0.4228      -0.0118      -0.0007

     4       0.0000      -1.1947       0.0000

     5       0.4228      -0.0118       0.0007

 

*** SUPPORT REACTIONS *** (UNITS MTON-METER)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1        3.103        6.161        0.000

     2       -3.103        6.161        0.000

 

*** MEMBER END FORCES *** (UNITS MTON-METER)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      3      6.062     -3.103     -6.919

            1     -6.161      3.103     -0.000

 

     2      5      6.062      3.103      6.919

            2     -6.161     -3.103      0.000

 

     3      3      5.029      4.591      6.919

            4     -2.906      1.087      2.388

 

     4      4      2.906      1.087     -2.388

            5     -5.029      4.591     -6.919

 

 

 

*** STRUCTURE WEIGHT *** (UNIT MTON)

<<<  0.67 MTON >>>

 

            *** DATE : 4/2/2001  TIME: 17:14:27 ***

 

       **************************************************

       *                                                *

       *                S T A N - I                     *

       *  By Rafael H. Padilla V. / Copyright (c) 2001  *

       *        e-mail: stan_uno@hotmail.com            *

       *                                                *

       **************************************************

 

 

 

 

 

 

 

 

 

 

 

 

 

EX. 2:

 

FILE:  FEM48E2

 

UNIT: KNEWTONS & METERS

 

MEMBER PROPERTIES:

            MEMBER 1 & 2 : AX = 0.08,  IZ = 1.067*10 & E = 3*10

            MEMBER        3 : AX = 0.15,  IZ = 2.000*10& E = 2*10

 

 

 

FIG:

 

 

 

 


INPUT FILE FOR EXAMPLE 2:

 

STAN I:EXAMPLE 2 TAKE OF FEM48 REFERENCE MANUAL

* INPUT FILE: FEM48E2

 

UNITS KNS METERS

 

JOINT COORDINATES

 1 0 2.5

 2 3.5 5.5

 3 6 5.5

 4 6 0

 

MEMBER INCIDENCES

 1 1 2 3

 

MEMBER PROPERTIES

 1 2 PRISM AX 0.08 IZ 1.067E-3

 3   PRISM AX 0.15 IZ 2.000E-3

 

CONSTANTS

 E 3E7 MEMBER 1 2

 E 2E8 MEMBER 3

 

SUPPORTS

 1 PINNED

 4 FIXED

 

LOAD 01 LOAD SHOW IN EXAMPLE FIG

MEMBER LOAD

 1 UNIF GY 10

 3 UNIF GY 2

 

FINISH

 


 

ANALISIS RESULTS FOR EXAMPLE 2:

 

 

 

 

 

       **************************************************

       *                                                *

       *          S T A N - I                           *

       *          Version 1.01a                         *

       *          Copyright (c) 2001 By                 *

       *              _                                 *

       *          DISENO & SUPERVICION, Inc.            *

       *                                                *

       **************************************************

 

 

  1. STAN I:EXAMPLE 2 TAKE OF FEM48 REFERENCE MANUAL

  2. * INPUT FILE: FEM48E2

  3.

  4. UNITS KNS METERS

  5.

  6. JOINT COORDINATES

  7.  1 0 2.5

  8.  2 3.5 5.5

  9.  3 6 5.5

 10.  4 6 0

 11.

 12. MEMBER INCIDENCES

 13.  1 1 2 3

 14.

 15. MEMBER PROPERTIES

 16.  1 2 PRISM AX 0.08 IZ 1.067E-3

 17.  3   PRISM AX 0.15 IZ 2.000E-3

 18.

 19. CONSTANTS

 20.  E 3E7 MEMBER 1 2

 21.  E 2E8 MEMBER 3

 22.

 23. SUPPORTS

 24.  1 PINNED

 25.  4 FIXED

 26.

 27. LOAD 01 LOAD SHOW IN EXAMPLE FIG

 28. MEMBER LOAD

 29.  1 UNIF GY 10

 30.  3 UNIF GY 2

 31.

 32. FINISH

 

 

     **********************************

     <<<   PRINT ANALISIS RESULTS   >>>

     **********************************

 

 

<<< LOAD NUMBER :   1 LOAD SHOW IN EXAMPLE FIG  >>>

*** JOINT DISPLACEMENT *** (UNITS CMS-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000       0.0013

     2      -0.0946       0.1157      -0.0007

     3      -0.0932       0.0003       0.0002

     4       0.0000       0.0000       0.0000

 

*** SUPPORT REACTIONS *** (UNITS KNS-METERS)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1      -13.581      -35.250        0.000

     4       13.581      -21.847      -49.539

 

*** MEMBER END FORCES *** (UNITS KNS-METERS)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      1    -33.252    -17.926      0.000

            2      3.252    -17.074     -1.962

 

     2      2    -13.581     10.847      1.962

            3     13.581    -10.847     25.157

 

     3      3    -10.847    -13.581    -25.157

            4     21.847     13.581    -49.539

 

 

 

*** STRUCTURE WEIGHT *** (UNIT KNS)

<<< 107.07 KNS >>>

 

            *** DATE : 4/2/2001  TIME: 17:15:40 ***

 

       **************************************************

       *                                                *

       *                S T A N - I                     *

       *  By Rafael H. Padilla V. / Copyright (c) 2001  *

       *        e-mail: stan_uno@hotmail.com            *

       *                                                *

       **************************************************


 

EX. 3:

 

FILE:  FEM48E1

 

UNIT: KNEWTONS & METERS

 

MEMBER PROPERTIES:

            MEMBER 1 & 2 : AX = 0.08,  IZ = 1.067*10 & E = 3*10

 

FIG:

 

 


INPUT FILE FOR EXAMPLE 3:

 

STAN I: EXAMPLE 1 FROM FEM48

 

UNITS METERS KNS

 

JOINT COORDINATES

 1 0 0 3 10 0

 

MEMBER INCIDENCES

 1 1 2 2

 

MEMBER PROPERTIES

 1 2 PRISM AX 0.08 IZ 1.067E-3

 

CONSTANTS

 E 3E7 ALL

 

SUPPORTS

 1 2 FY

 3   FIXED

 

LOAD 01 CARGA LOAD FROM EXAMPLE FIG.

JOINT LOAD

 1 MZ -75

MEMBER LOAD

 1 UNIF GY -10 1 4

 2 CONC GY -100

 

FINISH

 


 

 

 

 

ANALISIS RESULTS FOR EXAMPLE 3:

 

 

 

 

 

       **************************************************

       *                                                *

       *          S T A N - I                           *

       *          Version 1.01a                         *

       *          Copyright (c) 2001 By                 *

       *              _                                 *

       *          DISENO & SUPERVICION, Inc.            *

       *                                                *

       **************************************************

 

 

  1. STAN I: EXAMPLE 1 FROM FEM48

  2.

  3. UNITS METERS KNS

  4.

  5. JOINT COORDINATES

  6.  1 0 0 3 10 0

  7.

  8. MEMBER INCIDENCES

  9.  1 1 2 2

 10.

 11. MEMBER PROPERTIES

 12.  1 2 PRISM AX 0.08 IZ 1.067E-3

 13.

 14. CONSTANTS

 15.  E 3E7 ALL

 16.

 17. SUPPORTS

 18.  1 2 FY

 19.  3   FIXED

 20.

 21. LOAD 01 CARGA LOAD FROM EXAMPLE FIG.

 22. JOINT LOAD

 23.  1 MZ -75

 24. MEMBER LOAD

 25.  1 UNIF GY -10 1 4

 26.  2 CONC GY -100

 27.

 28. FINISH

 

 

     **********************************

     <<<   PRINT ANALISIS RESULTS   >>>

     **********************************

 

 

<<< LOAD NUMBER :   1 CARGA LOAD FROM EXAMPLE FIG.  >>>

*** JOINT DISPLACEMENT *** (UNITS CMS-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000      -0.0036

     2       0.0000       0.0000      -0.0000

     3       0.0000       0.0000       0.0000

 

*** SUPPORT REACTIONS *** (UNITS KNS-METERS)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1        0.000      -12.471        0.000

     2        0.000       92.429        0.000

     3        0.000       50.043      -62.571

 

*** MEMBER END FORCES *** (UNITS KNS-METERS)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      1      0.000    -12.471    -75.000

            2      0.000     42.471    -62.357

 

     2      2      0.000     49.957     62.357

            3      0.000     50.043    -62.571

 

 

 

*** STRUCTURE WEIGHT *** (UNIT KNS)

<<< 61.46 KNS >>>

 

            *** DATE : 4/2/2001  TIME: 17:16:34 ***

 

       **************************************************

       *                                                *

       *                S T A N - I                     *

       *  By Rafael H. Padilla V. / Copyright (c) 2001  *

       *        e-mail: stan_uno@hotmail.com            *

       *                                                *

       **************************************************


EX. 4:

 

FILE:  STANLEY

 

UNIT:  FEET & KIPS

 

CONSTANTS:

            E = 29000 KIPS/IN & DENSITY = 490 KIPS/IN

 

FIG:

 


INPUT FILE FOR EXAMPLE 4:

 

STAN I:FRAME FROM BOOK OF STANLEY W. CRAWLEY & ROBERT M. DILLON

 

UNITS FEET KIPS

JOINT COORDINATES

1 0.000 0.000

2 48.000 0.000

3 0.000 16.000

4 24.000 26.000

5 48.000 16.000

 

MEMBER INCIDENCES

1 1 3

2 3 4

3 4 5

4 5 2

 

MEMBER PROPERTIES

 1 TO 4 TAB ST W14X48

 

UNITS INCHES

CONSTANTS

 E 29000.0 ALL

 DEN 490.00 ALL

UNITS FEET

 

SUPPORTS

  1 2 PINNED

 

LOAD 01 CARGAS CONCENTRADAS

 JOINT LOAD

   3 FX 2.0 FY -3.0

   5 FY -3.0

   4 FY -6.0

 MEMBER LOAD

   1 CON GX 4.0 8.0

   2 3 CON GY -6.0 8.6667

   2 3 CON GY -6.0 17.3333

 

LOAD 02 CARGA UNIFORME

 MEMBER LOAD

  2 3 UNIF PY -0.800

  3   UNIF  Y  0.300

 

FINISH

ANALISIS RESULTS FOR EXAMPLE 4:

 

 

 

 

       **************************************************

       *                                                *

       *          S T A N - I                           *

       *          Version 1.01a                         *

       *          Copyright (c) 2001 By                 *

       *              _                                 *

       *          DISENO & SUPERVICION, Inc.            *

       *                                                *

       **************************************************

 

 

  1. STAN I:FRAME FROM BOOK OF STANLEY W. CRAWLEY & ROBERT M. DILLON

  2.

  3. UNITS FEET KIPS

  4.

  5. JOINT COORDINATES

  6. 1 0.000 0.000

  7. 2 48.000 0.000

  8. 3 0.000 16.000

  9. 4 24.000 26.000

 10. 5 48.000 16.000

 11.

 12. MEMBER INCIDENCES

 13. 1 1 3

 14. 2 3 4

 15. 3 4 5

 16. 4 5 2

 17.

 18. MEMBER PROPERTIES

 19.  1 TO 4 TAB ST W14X48

 20.

 21. UNITS INCHES

 22. CONSTANTS

 23.  E 29000.0 ALL

 24.  DEN 490.00 ALL

 25. UNITS FEET

 26.

 27. SUPPORTS

 28.   1 2 PINNED

 29.

 30. LOAD 01 CARGAS CONCENTRADAS

 31.  JOINT LOAD

 32.    3 FX 2.0 FY -3.0

 33.    5 FY -3.0

 34.    4 FY -6.0

 35.  MEMBER LOAD

 36.    1 CON GX 4.0 8.0

 37.    2 3 CON GY -6.0 8.6667

 38.    2 3 CON GY -6.0 17.3333

 39.

 40. LOAD 02 CARGA UNIFORME

 41.  MEMBER LOAD

 42.   2 3 UNIF PY -0.800

 43.   3   UNIF  Y  0.300

 44.

 45. FINISH

 

 

     **********************************

     <<<   PRINT ANALISIS RESULTS   >>>

     **********************************

 

 

<<< LOAD NUMBER :   1 CARGAS CONCENTRADAS  >>>

*** JOINT DISPLACEMENT *** (UNITS INCHES-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000      -0.0014

     2       0.0000       0.0000      -0.0109

     3       0.4532      -0.0078      -0.0050

     4       0.9448      -1.2076       0.0014

     5       1.4349      -0.0091      -0.0007

 

*** SUPPORT REACTIONS *** (UNITS KIP-FEET)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1        1.800       16.667        0.000

     2       -7.800       19.333        0.000

 

*** MEMBER END FORCES *** (UNITS KIP-FEET)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      1     16.667     -1.800     -0.000

            3    -16.667      5.800    -60.799

 

     2      3     12.456      9.615     60.799

            4     -7.841      1.462     45.202

 

     3      4      8.867     -1.000    -45.202

            5    -13.482     12.077   -124.799

 

     4      5     19.333      7.800    124.799

            2    -19.333     -7.800     -0.000

 

 

 

<<< LOAD NUMBER :   2 CARGA UNIFORME  >>>

*** JOINT DISPLACEMENT *** (UNITS INCHES-RADIANS)

 

 JOINT      X-TRANS      Y-TRANS      Z-ROTAN

 

     1       0.0000       0.0000      -0.0001

     2       0.0000       0.0000      -0.0103

     3       0.3747      -0.0076      -0.0056

     4       0.8774      -1.2267       0.0022

     5       1.3784      -0.0071      -0.0009

 

*** SUPPORT REACTIONS *** (UNITS KIP-FEET)

 

 JOINT      FORCE-X      FORCE-Y        MOM-Z

 

     1        4.147       16.088        0.000

     2       -7.147       15.113        0.000

 

*** MEMBER END FORCES *** (UNITS KIP-FEET)

 

MEMBER     JT      AXIAL     SHEAR-Y       MOM-Z

 

     1      1     16.088     -4.147     -0.000

            3    -16.088      4.147    -66.351

 

     2      3     10.015     13.255     66.351

            4     -2.631      4.468     47.880

 

     3      4      5.025     -1.278    -47.880

            5    -12.410     11.201   -114.351

 

     4      5     15.113      7.147    114.351

            2    -15.113     -7.147     -0.000

 

 

 

*** STRUCTURE WEIGHT *** (UNIT KIP)

<<< 6966755.53 KIP >>>

 

            *** DATE : 4/2/2001  TIME: 17:17:14 ***

 

       **************************************************

       *                                                *

       *                S T A N - I                     *

       *  By Rafael H. Padilla V. / Copyright (c) 2001  *

       *        e-mail: stan_uno@hotmail.com            *

       *                                                *

       **************************************************